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Living systems transmit heritable information using the replicating gene
sequences and the cycling regulators assembled around gene sequences.
Here, I develop a framework for heredity and development that includes
the cycling regulators parsed in terms of what an organism can sense
about itself and its environment by defining entities, their sensors and the
sensed properties. Entities include small molecules (ATP, ions, metabolites,
etc.), macromolecules (individual proteins, RNAs, polysaccharides, etc.)
and assemblies of molecules. While concentration may be the only relevant
property measured by sensors for small molecules, multiple properties that
include concentration, sequence, conformation and modification may all be
measured for macromolecules and assemblies. Each configuration of these
entities and sensors that is recreated in successive generations in a given
environment thus specifies a potentially vast amount of information driving
complex development in each generation. This entity–sensor–property
framework explains how sensors limit the number of distinguishable
states, how distinct molecular configurations can be functionally equivalent
and how regulation of sensors prevents detection of some perturbations.
Overall, this framework is a useful guide for understanding how life evolves
and how the storage of information has itself evolved with complexity since
before the origin of life.
1. Introduction
Analyses of living systems from molecular to population scales have revealed
information storage and processing across multiple scales as key attributes of
life [1]. The need to understand the behaviour of a basic unit of life—a single
cell—in terms of an integrated framework for information handling has been
previously articulated [2–5], but is yet to be developed. A single cell is often
the bottleneck stage that separates successive generations, making it the mini-
mal space for storing all heritable information (see electronic supplementary
material for variations on the single-cell bottleneck). Such information in
molecules is part of the ‘nature’ of organisms and does not include information
transmitted when parents train progeny, which can be considered as ‘nurture’.
Cells and more complex living systems can change their information content by
learning through interactions with their environment. However, their ability
to transmit any such learned information from one generation to the next is
limited by the available storage in the bottleneck stage and potentially other
system constraints (e.g. inability of learned information to cross generational
boundaries) [6]. To appreciate these limits, we need to consider the total
amount of information that could be encoded using all molecules in the bottle-
neck stage. Such joint consideration of all heritable information that is
transmissible using molecules will inform how complexity grows over evol-
utionary time, what constitutes nature versus nurture and how to synthesize
new living systems.

To facilitate discussion of all heritable information, I begin by defining key
terms introduced in an earlier article [6]: stores of information, stored information
and cell code. Stores (n.) of information refer to molecules or arrangements of
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molecules that hold information. This information can be
transferred to other molecules or arrangements and the orig-
inal store can be degraded or modified after such transfer.
Therefore, molecules and arrangements of molecules can
have stored (v.) information. Cell code (n.) refers to the heritable
information that encodes the development of organisms from a
bottleneck stage, which is minimally a single cell. Similar
development in successive generations in a given environment
presumably relies on similar cell codes assembled during bot-
tleneck stages (see electronic supplementary material for more
on assembly of cell codes).

The information in a cell code can be conceptually separ-
ated into two distinct forms [6]. One is the genome sequence,
where information is stored in a linear sequence of bases, and
the other is the recurring arrangement, where information is
stored in the concentrations, configurations and interactions
of molecules in bottleneck stages (see electronic supplemen-
tary material on cell code assembly). While the information
content in this arrangement and the extent to which it is
recreated is currently not easily quantified, it is clear that her-
edity relies on information that is held in multiple stores and
transmitted across generations. This communication of heri-
table information through the development of an organism
from one generation to the next has been likened to the trans-
mission of messages through a communication channel from
sender to receiver (e.g. [6,7]). Just as ‘the fundamental
problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another
point’ [8], the fundamental problem of heredity is that of repro-
ducing at one bottleneck stage either exactly or approximately a
cell code selected at the preceding bottleneck stage.

Each choice ofmolecules and their arrangement in bottleneck
stages collectively stores heritable information and forms amess-
age transmitted across generations. The average information
content in a message chosen from among N possible messages
is given by the Shannon entropy, H ¼ PN

i¼1 � pi � log2pi,
where pi is the probability of the ith message [8,9]. If the prob-
ability of selecting each message is equal, this expression
simplifies to give the maximal information a message can carry,
H ¼ PN

i¼1 �1=N � log2(1=N) ¼ log2N bits. Therefore, to deter-
mine the maximal heritable information in a living system, we
need to enumerate all distinguishable states of its bottleneck
stage (i.e. N). This exercise will provide a starting point for the
joint analysis of all heritable information that needs to be trans-
mitted across generational boundaries for the reproduction of
living systems.
2. Static and dynamic storage of information
The logical requirements for self-replication have been
explored in two-dimensional universes called cellular
automata using abstract ‘machines’ [10].1 Of particular
relevance are self-replicating machines that use the same
store of information in two distinct ways: (i) as instructions
whose interpretation leads to the construction of an identical
copy of the machine and (ii) as data to be copied without
interpretation and placed in the copied machine.

This scheme for making self-replicating machines avoids
the infinite regress of instructions stored within instructions
and is often presented as analogous to the process of self-
replication in living systems with the ‘instructions’ being
held in DNA. However, the instructions for replicating a
machine can be held either in static tapes (e.g. the von
Neumann universal constructor, figure 1a) or in dynamic
tapes (e.g. the Langton loop, figure 1b).

These two different types of instruction storage can be
viewed as occurring simultaneously in living systems as the
‘static’ genome sequence and the ‘dynamic’ recurring
arrangement of molecules [6].

The transmission of the genome sequence from one
generation to the next occurs along a lineage of cells that
each go through cell division cycles. As a result, numerous
additional cycling stores can carry information across gener-
ations. For example, the information for copying a genome is
stored in an arrangement of molecules that changes during
replication such that the genome is usually copied with a
period of one cell division cycle. Additional cycling stores
of information are clearly recognizable in oscillations that
occur at different temporal and spatial scales relative to gen-
eration time. These include oscillations in the chemical
modifications of molecules (e.g. approx. 24 h period in cyano-
bacteria [13] despite an approx. 12 h cell cycle [14]), in the
localizations of molecules (e.g. approx. 40 s period in cell
lines that have an approx. 24 h cell cycle [15]), in the collective
morphology of embryonic cells (e.g. approx. 0.5 h period in
sea anemone that have an approx. 0.5 h cell cycle [16]) and
in the activity levels of circuits (e.g. approx. 24 h circadian
rhythms in non-cycling neurons [17]).

From these considerations, the following realizations
emerge about living systems:

(1) The transmission of form and function across generations
relies on many stores of information that cycle with
different periods that could each in principle range
from less than the duration of one cell division cycle to
more than that of one generation.

(2) The relative phases of the many cycles within the con-
tinuous lineage of cells between generations create
distinct states over time such that the cell code for the
development of an organism is approximated at the
start of each generation.

Thus, the integrated process of self-replication cannot be
artificially parsed into the static genome that holds all the
instructions to be interpreted by the dynamic molecular
machines in the cell.
3. Information in self-replicating machines
Consideration of the total information stored in a self-repli-
cating machine can clarify the different stores of
information required for replication and sharpen the corre-
sponding unknowns in living systems. For example,
consider the self-replicating universal constructor (figure 1a),
which has a ‘machine’ that has 6329 parts with 32 states per
part and uses an instruction tape that has 145 315 parts with
two states per part. The maximal information stored in this
machine could be enumerated by separately considering
three different stores that each have analogues in living sys-
tems: (i) the configuration or shape of the machine, (ii) the
instruction tape, and (iii) the parts of the machine.

The information stored in the shape of the machine is
incalculably large because we have to consider the universe
of shapes from which the particular assembly of parts that
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Figure 1. Self-replicating ‘machines’ with instructions held in a static tape or in a dynamic tape have been implemented in cellular automata. (a) Implementation of
John von Neumann’s design of universal constructor [11]. (Top) The universal constructor in the starting configuration. (Inset) Schematic of broad regions within the
universal constructor. (Bottom) The 32 states of the parts that make up the machine (see [11] for the meaning of each colour). (b) Implementation of the Langton
loop [12]. (Left) The loop in the starting configuration. (Middle) A replication intermediate showing the use of all states. (Right) Loops near the end of one round of
replication. (Bottom) The eight states used for replicating the loop (see [12] for the meaning of each colour). Red bar indicates scale for comparing (a,b). See
Methods in the electronic supplementary material for additional details.
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make the machine was selected (see electronic supplementary
material, text and figure S1 for a proof). This information is
akin to the information required for getting together the par-
ticular collection of molecules that constitutes each current
living system and has accrued since before the origin of life
along the lineage of every living system. Because the
unknown information in all historical environments (i.e.
past available complements of molecules) needs to be taken
into account to determine what life accrued bit by bit [18],
the magnitude of this information is incalculable.

The maximal information that can be stored in the instruc-
tion tape that has N = 145 315 parts with two states each is
given by H = log2 2N =N = 145 315 bits. This store is analo-
gous to the linear genome where the information is stored
in the sequence of the four bases in DNA (A, T, G, C). For
such a genome of length L, H = log2 4

L = 2L bits.
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The maximal information that can be stored in the
machine that has N = 6329 parts with 32 states each is given
by H = log2 32

N = 5N = 31 645 bits. This store could be analo-
gous to everything other than the genome sequence within
the bottleneck stage. However, unlike in cellular automata,
discrete states of living systems are not easily defined. Calcu-
lating the information in this potentially vast store requires
definition of the biologically relevant states of the bottleneck
stage. For any given genome, knowing the rest of the cell
code for different organisms is a prerequisite for constructing
living systems of varying complexity.

Here, I develop a framework for all the heritable infor-
mation in a living system in terms of what that system can
sense about itself and its environment. This framework is
useful for guiding the experimental analysis of living systems
and potentially for the design and analysis of other persistent
adapting systems.
 erface

17:20200154
4. Heritable information in living systems
The spatial arrangement of the genome and everything else
within the bottleneck stage could change over the course of
development such that similar arrangements are reached
with a period of one life cycle. As a result, molecules that
are part of the recurring cell code could play different roles
throughout development and defy permanent classification
based on their roles. For example, an abundant maternal
RNA that is simply used as a source of nucleotides in the
developing embryo could at a later stage become a message
that is translated into a protein. Nevertheless, a temporary
classification during the bottleneck stage is necessary to enu-
merate the bits of information stored in cell codes. To
facilitate this enumeration in units that are relevant for each
living system and its environment, I propose considering
entities, their sensors and the sensed properties.

4.1. Entities
An entity is a molecule2 or association of molecules within a
living system or in the environment that interacts with the
living system. A cell code can include entities that are
measured through interaction with other entities sometime
during the life cycle and also entities that are never measured,
which can be considered as by-products made by the pro-
cesses of life. Such effectively inert and unmeasured entities
could nevertheless non-specifically contribute to molecular
crowding at the bottleneck stage and thereby affect inter-
actions among other entities. While the number of all
molecules in a cell is large but countable, the combinatorial
associations of molecules could make the total number of
effective entities (N ) larger still. Cellular components that
are entities or parts of entities include small molecules such
as ATP, water, ions, metabolites, etc., for which perhaps
only concentrations are discerned by sensors, and macromol-
ecules such as individual proteins, RNAs, polysaccharides,
etc., for which concentrations, sequences and conformations
may all be discerned by sensors.

4.2. Sensors
A sensor is an entity or an association of entities within the
living system that responds to changes in other entities
with changes in its properties such that these changes can
result in subsequent changes in the rest of the living system
or its environment. A sensor could sense entities within the
system (N total) or in the outside environment (O total)
that interacts with the system (e.g. salts, nutrients, etc.). An
entity that binds or collides with another entity without
any specific downstream consequences is not considered a
sensor (e.g. one water molecule bumping onto a membrane).
An entity could be a part of multiple sensors. For example, a
protein complex formed by the association of A, B and C pro-
teins could be detecting and responding to the concentration
of ATP, while another protein complex made of A and C
could be detecting GTP. Conversely, multiple sensors could
be measuring the same entity. For example, the many kinases
in the cytosol are all potentially sensitive to the levels of a
common pool of ATP. By these definitions, ATP itself can
be a sensor because its levels change in response to pro-
duction by a synthase and this change is communicated to
the kinases that respond to changes in ATP levels. All sensors
are entities, but not all entities are sensors.

4.3. Properties
A property is an attribute of an entity that is relevant for a
living system because a sensor exists that can respond to
changes in the values of that attribute. The number of differ-
ent values for a property of an entity depends on the sensor
and on the regulatory constraints of the system. Consider two
sensors that can detect changes in the number of molecules of
a particular RNA: a protein Lo responds when the numbers
increase by 10 and a protein Hi responds when the numbers
increase by 100. These two proteins would thus each ‘see’
different numbers of measurable units for the same property
(number of molecules) of the same entity. However, not all
detectable values for a relevant property of an entity could
be attainable because of the regulatory constraints of the
system. For example, if the RNA accumulated in steps of 50
molecules at a time, then many of the values measurable by
Lo are never available in the living system because the
system changes in steps that are larger than the measuring
step of the Lo sensor.

4.4. Environment
Organisms develop as open systems interacting with the
environment. Therefore, some entities in the environment are
measured and reacted to by the living system throughout
development. Even for a constant environment, some entities
may be measured by different sensors that are active at differ-
ent times during development. As a result, living systems are
really system–environment combinations. Aspects of ‘sensing’
considered for interactions within the system are also relevant
for interactions with the environment. Specifically, the sensed
attributes of entities in the environment depend on the nature
of the evolved sensors in the system andmolecular crowders in
the environment canmodify the interaction between sensors in
the system and entities in the environment.

4.5. Forces
Living systems can generate and be exposed to many kinds of
forces, which are not being explicitly considered in the frame-
work for heritable information developed here. Rather, they
are implicitly accounted for in the properties of entities. For
example, an entity experiences/exerts gravity because of its
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mass, electrostatic attraction because of its charge, tension
because of its elasticity, etc. Thus, heritable information cap-
tured using entities, sensors and properties can account for
relevant forces in the living system or in the environment.

4.6. Configurations
The number of ways in which molecules can be arranged in
the bottleneck stage such that they can be distinguished by
the system provides an upper bound for the information
that can be stored in a cell code, which is the subset of con-
figurations that are nearly reproduced during the bottleneck
stage of successive generations. The maximal number of
such distinguishable configurations of a living system for a
given number of interacting entities in the environment is
given by the product of the number of possible genome
sequences and the number of possible systems and their
coupled environments that can support each genome
sequence. Assuming that each system–environment combi-
nation generates one characteristic set of unmeasured
entities that contribute to crowding effects, the number of dis-
tinguishable configurations for a living system and its
environment during the bottleneck stage (Ctot) is given by

Ctot ¼ XL
XB
i¼1

Ei

XSi
j¼1

Sj
XPj

k¼1

Pk

 !0
@

1
A

0
@

1
A ð4:1Þ

Ctot is the genomes × system–environments, X the
number of types of bases in the genome, L the length of
the genome in base pairs, E the measured entity (total B
in the bottleneck stage: Nb in system, Ob in environment), S
the measuring sensor (total Si for ith entity), = f (Y ), where
each Y⊆ {E1, E2, …, EN} i.e. a configuration of entities, N
per life cycle, P the attainable and measurable values of
property (total Pj for the jth sensor of the ith entity).

This entity–sensor–property framework enumerates all dis-
tinguishable configurations as a product of four terms that
encapsulate the maximal numbers of distinct states in two
stores of information: XL enumerates all possible genome
sequences, which are replicating stores of heritable information,
and

P
i Ei
P

j Sj
P

k Pk enumerates all potentially recurring
arrangements of interacting molecules, which are cycling
stores of heritable information. Such enumeration without con-
sidering rearrangements of chemical bonds within any
molecule can be thought of as biological entropy and is less
than the chemical entropy of an organism, which was initially
estimated allowing for rearrangements of chemical bonds to
be approximately 4.2 × 1010 bits for Escherichia coli [19].

It is clear that the replicating store cannot uniquely predict
the cycling store as evidenced by most distinguishable cell
types of the human body all having the same genome
sequence. However, interdependence of the two stores and
compatibility with the perpetuation of life reduce this maximal
number of distinguishable states of the bottleneck stage. In
other words, fewer configurations can act as heritable cell
codes (Cell codetot <Ctot) because of mutual constraints
between the arrangement of molecules and the genome
sequence in living systems. First, some genome sequences
may not be sufficiently complex to support any living
system (e.g. a genome of all As, all Gs, all Cs or all Ts).
Second, each genome sequence constrains but does not dictate
the number and kinds of entities that could be part of any cell
that contains the genome (e.g. DNA sequence constrains RNA
sequence, which constrains protein sequence). Third, the
genome sequence may also constrain the total number of poss-
ible arrangements of molecules within any cell—i.e. the
number of cell states and cell types—in a given environment.
Fourth, the lineage of cells that connects two generations
may be incapable of supporting some cell types because of
the need to return to the cell code at the start of each gener-
ation within the context of a living system (i.e. some
differentiated cell types may be irreversible within the context
of the living system, although many can be transformed into
pluripotent stem cells in vitro [20]). The number of all possible
cell codes, however, is likely greater than that seen in evolved
organisms because the historical process of evolution is not
expected to allow exploration of every cell code (i.e. Ctot >
Cell codetot > Cell codeevol).

Cell codes of varying complexity have evolved over time
to specify the development of each organism that has ever
existed [6]. Cell codes could in principle differ in the relative
amounts of information stored in the genome sequence
versus in the arrangement of molecules. The interdependence
of these two stores of information invites exploration of the
relationship between their storage capacities over evolutionary
time. Consider the consequences of adding into a pre-existing
cell code a newly evolved gene sequence that codes for a
protein. The number of possible genome sequences of a
given length that can support this cell code decreases because
fewer distinct genomes can include the gene sequence for the
new protein (i.e. total sequences becomes less than XL, elec-
tronic supplementary material, figure S2). However, the
number of distinguishable arrangements of all molecules
can either increase or decrease. An increase can occur because
addition of the new DNA sequence, the transcribed RNA and
the translated protein to the contents of the cell could all lead
to new interactions with pre-existing molecules (i.e. E, S and P
could all increase, resulting in a larger value forP

i Ei
P

j Sj
P

k Pk). A decrease can occur because these new
molecules could constrain the arrangement through regulat-
ory interactions (see entity–sensor–property: insights).
Furthermore, the magnitude of changes in

P
i Ei
P

j Sj
P

k Pk

depends on the nature of the new gene product (e.g.
expression or repression of many gene sequences by a tran-
scriptional activator or repressor, respectively, could lead to
large changes). Studies on the origin and evolution of infor-
mation storage could illuminate trends in the partition of
heritable information between different molecular stores and
lead to general principles (for related views emphasizing
arrangement, see [21,22], genome sequence, see [23,24],
anatomy, see [25] and energy, see [26]). For example, the com-
plexity of cell codes, and thus organisms, may have increased
through restriction of the genome sequence along with expan-
sion of the arrangement of molecules as sources of neutral or
adaptive variation.
5. Entity–sensor–property: extensions
Several processes in living systems could limit or expand the
number of arrangements in the bottleneck stage
(
P

i Ei
P

j Sj
P

k Pk). Processes that can change the information
content of cell codes by decreasing (e.g. self-organization and
self-assembly), increasing (e.g. chemical modification) or
variably changing (e.g. compartmentalization) entities, sen-
sors and/or properties are being actively analysed. Living
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systems could manipulate heritable information through the
regulation of all such processes.
Figure 2. Distinguishable states in a toy model of possible cell codes with a
given ‘genome’ and ‘environment’. Three entities (E1, E2, E3), two sensors (S1,
S2) and one sensed property (P) are considered. The measurable property
values of each entity by each sensor are enumerated (E1S1P, E1S2P,…).
Each distinguishable set of property values for all entities defines a dis-
tinguishable state. Therefore, the number of distinct elements in a set of
the measured values (i.e. |E1S1P|, |E1S2P|,…) can be used to calculate the
total number of distinguishable states in the system (4 × 3 × 2 × 2 ×
3 × 2 = 288), which is less than the number expected if every value of
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5.1. Impact of self-assembly and self-organization
Order can arise through the spontaneous association of mol-
ecules in living systems. Two forms of such spontaneous
order have been recognized: (i) self-assembly, which refers
to the formation of static structures that are relatively stable
(e.g. viruses, flagella) [27]; and (ii) self-organization, which
refers to the formation of dynamic structures that appear
stable (e.g. cytoskeleton, endocytic compartments) [28].
Both forms of order, however, depend on the immediate mol-
ecular environment. Therefore, changing the surroundings of
a ‘self-assembled’ or ‘self-organized’ structure can result in
alternative configurations that may be distinguishable by
evolved sensors. For example, cells can use an adaptor
protein to modulate the size of vesicles that form through
self-assembly [29] and cells can respond to pressure by rever-
sibly disassembling the mitotic spindle that is maintained
through self-organization [30,31]. In this way, living systems
can store and retrieve information from self-assembled and
self-organized collections of molecules.
every entity were distinguishable (4 × 4 × 4 × 4 × 4 × 4 = 4096).
5.2. Impact of chemical modifications
Modifications of nucleic acids (5 mC, 5hmC, m6A, etc.) or pro-
teins (phosphorylation, methylation, glycosylation, etc.)
result in new entities with properties that could potentially
be measured by sensors. Modified bases on the genome
could increase the number of possible spatial arrangements
of the genome and its binding partners (i.e. E, S and P in
equation (4.1)), and could also increase sequence information
(i.e. X in equation (4.1)) if the modification alters base-pairing.
Modifications on RNA or proteins on the other hand could
either increase or decrease E, S, and P, but always reduce the
maximal number of genomes of a given length that could sup-
port such a modification because each possible genome would
be constrained to include the gene sequence for the enzyme
that catalyses the modification (i.e. total sequences become
less than XL). Similar considerations hold for modifications
of all other molecules in the bottleneck stage.
5.3. Impact of compartmentalization
Living systems dynamically manipulate which entities come
together into organized units and which outputs from these
units are subsequently measured. When different subcellular
compartments form, the same entity or sensor could be present
in two ormore different compartments. If two such pools of the
same entity are sensed separately during the life cycle of an
organism, the total number of possible configurations is effec-
tively increased. Alternatively, many different entities could be
encapsulated into one compartment. If only a few aggregate
properties of the compartment are sensed during the life cycle
of an organism (e.g. droplet sizes of phase-separated aggregates
such as RNA granules [32] or numbers of organelles such as
mitochondria), the number of distinguishable configurations
are effectively reduced.

These different ways of changing entities, sensors and
properties highlight the multiscale nature of living systems
and suggest the utility of different entity–sensor–property
frameworks at different scales and across scales.
6. Entity–sensor–property: insights
To appreciate some implications of the framework, consider a
toy model where the genome sequence and the environment
are held constant (figure 2).

Let the remaining contents of a ‘cell’ include three entities
(E1, E2, E3—three English letters) that can be at four different
states (two fonts with upper and lower cases) and be sensed
by two sensors (S1 measuring lines and S2 measuring
curves). Each state is analogous to different experimentallymea-
surable values for a property of molecules in a cell (e.g.
concentration, localization, shape, charge, etc.). Consider the
entity E1 in state ‘A’ made of three straight lines. A sensor
that measures lines could measure one of numerous possible
properties: thickness of lines, colour of lines, length of lines,
etc. For simplicity, let number be the only property P sensed
by both S1 and S2. For example, the value of the property
sensed by S1 of E1 in state ‘A’ is 3 and that sensed by S2of E3

in state ‘c’ is 1 (see figure 2 for all values).
6.1. Sensors can limit information storage
To calculate the relevant information stored in a system, we
need to enumerate the number of different states of the enti-
ties sensed by the system (figure 2).

While each sensor can sense one property of each entity,
different states of an entity may not always be distinguishable
by a sensor (e.g. S1 will measure the states ‘C’ and ‘c’ of E3 as 0
and S2 will measure both as 1). Such indistinguishability is evi-
dent in living systems as the requirement for threshold levels of
a signal for a detectable response. Thus, ‘thresholding’ by the
sensor results in a reduction in the total number of states of
the system and thus the storable information (figure 2). For
example, this system of E, S and P can only distinguish 288
states (approx. 8.17 bits), but a naive estimate based on the abil-
ity to distinguish all states of all entities yields 4096 states (12
bits). Thus, the number of entropic states of a system depends
on the available sensors and their sensitivity.



(b)

(a)

Figure 3. Regulation reduces the number of states that can be sensed by the
system. (a) Two states for each entity—high (upper case) or low (lower
case)—were considered for exploring the impact of regulation in the toy
model. (b) Consequences of introducing regulatory constraints. Inhibition
(bar) or activation (arrow) between all pairs of entities were considered.
Matrices of distinguishable values ( product of all = number of states) for
each cell with regulatory interactions between E1 and E2 (top), E1 and E3
(middle) or E2 and E3 (bottom) are shown. Different regulatory constraints
result in differential reduction in the number of states of the system.
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6.2. Distinct states may be equivalent
Selection can impose external constraints on the form and
function of a living system. For example, the environment of
the system in the toy model might require ‘cells’ with consist-
ent fonts and case for survival. This would result in the
survival of cells with ‘ABC’, ‘abc’, etc., as the values for each
of the three entities (electronic supplementary material,
figure S3). However, because there are two possible cases
(upper versus lower), there would be two distinguishable
states that are effectively equivalent for survival in this
environment. Such situations could result in unregulated
redundancy such that similar functions are performed by
different molecules in random sets of cells [33]. Over evol-
utionary timescales, this type of unregulated redundancy
could result in organisms with similar form and function but
different underlying molecular mechanisms [34]. These con-
siderations also hold when such equivalency is imposed by
sensors that fail to distinguish different entities. For example,
a channel protein responding to changes in membrane poten-
tial would measure changes in different ions as equivalent as
long as the end result was a similar change in potential [35].

6.3. Regulation reduces sensed states
The different states of each entity could be classified as high
(upper case) or low (lower case) to simplify the analysis of
regulation in the system (figure 3a). This simplification is
similar to Boolean networks that have been used to explore
the impact of regulation [36]. All additions of either activation
or inhibition as a regulatory interaction between two entities
reduce the number of distinguishable states in the system
(figure 3b). This reduction occurs because any regulatory
interaction between two entities couples changes in those
entities. As a result, two entities that were previously free
to vary independently become either directly or inversely
correlated, leading to an overall reduction in the number of
possible states. Different regulatory architectures can lead to
different states with equivalent capacity for information sto-
rage. Specifically, 12 different single regulatory interactions
in the toy model lead to only three different storage
capacities—96, 216 or 256 states (figure 3b). Adding two
regulatory interactions results in all 36 different regulatory
architectures having only 96 distinguishable states (electronic
supplementary material, figure S4). These results suggest a
preliminary conclusion: regulation reduces the ability of
systems to store information in the arrangement of molecules.

6.4. Reducing states may promote robustness
Robustness is the ability of living systems to remain similar
despite some variation introduced by environmental or
internal conditions [37]. In other words, some changes
either do not alter anything about a robust system or can
alter some entities but nevertheless do not substantially
affect the system. The differences in the number of states in
cells with different regulatory architectures (figure 3b)
suggest a relationship between regulation and robustness of
cell types. Unlike in the toy model, in living systems, all sen-
sors are made from entities (equation (4.1)). Therefore, cell
types with fewer states could be more robust because they
are only capable of sensing, and thus responding to, fewer
perturbations. Conversely, cell types with many states could
be less robust because they are capable of sensing and
responding to many perturbations. Changes in regulatory
architectures could therefore be used to generate cell types
that are differently responsive to external signals, which
may have implications for the observed robustness of devel-
opment [38]. To achieve such robust development, entities
need to be assembled into cell codes such that the same
sequence of events unfolds despite some perturbations.
Storing entities as perturbation-resistant assemblies or com-
bining entities that fail under some conditions with entities
that fail under other conditions (redundancy) are possible
ways to ensure robust cell codes and subsequent development.
An additional possibility suggested by these observations is
reducing the number of sensors through increased regulation
such that some perturbations are simply not sensed.
7. Two-base genomes could be part of efficient
living systems

Our current ability to exquisitely edit genomes and transcrip-
tomes [39,40] is a limited manipulation of living systems in
that the outcome of the edit is entirely determined by how
the living system interprets the change. In other words, we
can make changes to a sequence and read out what the
living system does with the changed sequence, but we
cannot yet make changes that instruct a living system to per-
form arbitrary tasks. Such expanded manipulation could
require ways of increasing the complexity of the stored heri-
table information. As suggested by equation (4.1), this
increase could be achieved by either increasing storage in
the genome sequence or by increasing storage in the arrange-
ment of molecules. Increases in the storage capacity of a
genome by increasing the number of different bases will
require concomitant increases in the complexity of the
machinery for accurate reading and writing of the genome.
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For example, a 16-base genome of length L has four times the
capacity of a two-base genome (4L bits versus L bits). How-
ever, such a genome would require machinery for
discerning eight times as many kinds of bases. Furthermore,
the range of availabilities of bases that can support the
enhanced information storage decreases with an increase in
the number of different bases (figure 4).

Perhaps the simplest route to the synthesis of living sys-
tems with arbitrary capacity to store heritable information
would be to use a longer two-base genome that is equivalent
to the natural four-base genome (e.g. needs five-base codons
for encoding at least 20 amino acids, 25 > 20 > 24), but can be
supported by simpler machinery in the cell to read and write
the genome. Testing the practicability of this speculation
requires systematically changing the chemistry of the
genome and the cell while preserving overall storage capacity.
8. Discussion
By jointly considering all information transmitted from one
generation to the next using molecules, I have developed an
expanded view of heredity (see electronic supplementary
material for other applications). Heritable information stored
outside the genome sequence is limited by mutual constraints
with the sequence, by regulatory architectures and by what a
living system can sense about itself and its environment.

8.1. Strengths and limitations of framework
Entities and sensors in a cell were parsed based on their roles
at a particular time in development—the bottleneck stage.
However, the roles of entities and sensors are potentially
interconvertible over time. A sensor could become an unre-
sponsive entity for a while and an entity could become a
responsive sensor when it encounters another appropriate
entity. Such changes in roles are likely part of the changes
during development that lead to the assembly of cell codes
at the start of each generation. Given this time-bound
nature of entities and sensors, what is the duration of a bottle-
neck stage? This question is currently very difficult to answer
and poses a practical problem for unambiguously defining
the cell code of an organism. Nevertheless, the stability of
cell types suggests that functionally important states are
preserved for significant periods through homeostasis.

The framework presented here does not account for the sto-
chastic and noisy nature of all interactions within a cell. For
example, there are fundamental limits to control that result
from information loss [41] and the physical limits of biochemi-
cal signalling [42,43]. Unlike in man-made communication
systems, the presence of numerous simultaneous signalling
pathways in living systems—including as-yet unknown path-
ways—makes it unclear whether any observed variation in
one signalling pathway should be characterized a priori as inter-
ference from another signalling pathway or as noise.
Nevertheless, developing an understanding of heredity in
terms of genome sequence, entities, sensors and properties is
a first step towards future extensions of the framework that
could address these issues.

Some past frameworks for analysing living systems provide
conceptual structures for explaining their evolution and behav-
iour but do not inform their construction or origin. Models that
analyse evolutionary outcomes regardless of the material basis
of genotype and phenotype (e.g. [44]) are useful guides for the
analysis of organisms at the population level but not for the con-
struction of organisms from molecules sought here. Phylogeny,
architecture and adaptation have been combined to understand
trends in the evolution of form [45], but such models are cur-
rently not fine-grained enough to enable construction. The
productive analysis of complex systems by partitioning a
system into abstract nodes and edges to view particular aspects
of living systems as networks [46] has generated intuitions and
approaches that could be extended to the framework presented
here. Such extension beyond abstract networks is necessary to
enable the construction of living systems because typical abstrac-
tions do not incorporate all relevant properties of cellular
contents. The explicit consideration of relevant properties for
all entities that are measured by sensors in the framework pre-
sented here could help in accruing knowledge in a form that
is useful for the construction of living systems and for the
realization of a practical systems biology [47,48].
8.2. Synthesis of living systems
Building something using its constituent parts is a good
way to discover the flaws in our understanding of how it is
put together. For example, it is currently unclear if perfect
self-replication ever occurs in living systems. Perhaps the
perpetuation of life is always associated with having entities
that are not recreated with a period of one generation but
rather with longer or shorter periods. For example, when
the noisy and variable behaviour of a synthetic oscillating
circuit in E. coli [49] was improved to obtain synchronous
long-term oscillations [50], the period of oscillation increased
to 14 generations. Such possibilities can be explored by allow-
ing different generation times for the precise recreation of
some entities and arrangements in the cell code. The simi-
larity in form and function of parent and progeny, however,
suggests that the cell codes recreated with a period of one
generation are at least nearly equivalent for specifying
development in each generation.

Evolved cell codes are unlikely to be efficient stores of heri-
table information because of the historical measures and
counter-measures through which evolution proceeds [51,52].
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The efficient storage of the mutual information between two
variables can be achieved using a compressed bottleneck vari-
able [53,54]. If there was selection for effectively packing
maximal information into the bottleneck stage in living sys-
tems, the entities and arrangements of evolved cell codes
could similarly be efficient stores of the mutual information
between the past and the future. All such efficient cell codes
might have similar characteristics as observed in cellular auto-
mata in which the capacity to support computation emerges
(captured in the λ parameter in [55]). Despite the possibility
of such overall optimization, it is unclear if living systems
can evolve to maximally optimize information storage and/
or transmission for a particular trait. In fact, it might be diffi-
cult to define what the ‘optimum’ is for a process because
the presence of many homeostatic mechanisms in cells, includ-
ing transgenerational homeostasis [6], requires opposing
processes that could limit optimality. Experimental approaches
that attempt to generate minimal bacterial cells [56] need to be
extended to different organisms to discover how the complexity
of organisms scales with their cell codes.

Making efficient living systems of arbitrary complexity
requires a holistic approach to information handling. The
joint consideration of all heritable information presented in
this article suggests that a genome with two different kinds
of bases might function as an efficient replicating store
when combined with the simplest possible cycling stores
(figure 4). Thus far, experimental approaches to fundamen-
tally change heritable information have focused on
increasing the storage capacity of the genome. A 50% increase
in the storage capacity of DNA sequence can be achieved by
doubling the number of different bases in DNA [57].
Furthermore, an organism that uses a four-base genome can
be modified with two additional DNA bases to successfully
store [58] and retrieve [59] information. By contrast, we
cannot yet engineer such increases in the information stored
by the arrangement of molecules because our knowledge of
this store of heritable information is in its infancy. The theor-
etical and practical limits of varying all heritable information
deserve exploration to understand the evolution of natural,
modified and synthetic living systems.

Data accessibility. The code used is available as part of the electronic
supplementary material.

Competing interests. The author declares he has no competing interests.
Funding. Research in the author’s laboratory is supported by the NIH
(grant nos. R01GM111457 and R01GM124356).
Acknowledgements. The author thanks Tom Kocher, Karen Carleton,
Charles Delwiche, David Wolpert, Chris Kempes, Michael
Lachmann, Artemy Kolchinsky, James Yorke, Daniel Damineli,
Pierre-Emanuel Jabin, Katerina Ragkousi, David Jordan, K.P.
Mohanan, L.S. Sashidhara, Sudha Rajamani, Jyotsna Dhavan,
Michael Levin, Alejandro Sánchez Alvarado, Ajay Chitnis and
Victor Ambros for discussions and encouragement; and Tom
Kocher, Karen Carleton, Ken Helland, members of the Jose lab and
an anonymous reviewer for comments on the manuscript.
Endnotes
1Individual units in these machines are called ‘cells’, but are referred
to as ‘parts’ in this article to avoid confusion with biological cells.
2For simplicity, the term molecule is used to refer to everything found
in a living system that is chemically isolatable such as ions, atoms
and chemically bonded collections of atoms, and is extensible to all
factors that remain to be discovered.
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