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A common goal in the sciences is optimization of
an objective function by selecting control variables
such that a desired outcome is achieved. This
scenario can be expressed in terms of a control
landscape of an objective considered as a function
of the control variables. At the most basic level,
it is known that the vast majority of quantum
control landscapes possess no traps, whose presence
would hinder reaching the objective. This paper
reviews and extends the quantum control landscape
assessment, presenting evidence that the same highly
favourable landscape features exist in many other
domains of science. The implications of this broader
evidence are discussed. Specifically, control landscape
examples from quantum mechanics, chemistry and
evolutionary biology are presented. Despite the
obvious differences, commonalities between these
areas are highlighted within a unified mathematical
framework. This mathematical framework is driven
by the wide-ranging experimental evidence on
the ease of finding optimal controls (in terms
of the required algorithmic search effort beyond
the laboratory set-up overhead). The full scope
and implications of this observed common control
behaviour pose an open question for assessment in
further work.

This article is part of the themed issue ‘Horizons of
cybernetical physics’.

1. Introduction to control landscapes
Cybernetics is often referred to as ‘the science of
communications and automatic control systems in both
machines and living things’ [1]. This paper, based on
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a presentation at the 2016 IEEE Conference on Norbert Wiener in the 21st Century: Thinking
Machines in the Physical World, fully embraces the spirit of cybernetics by considering control
throughout the sciences and beyond in the twenty-first century.

Since Weiner wrote his original work, optimization has become ubiquitous throughout the
sciences and engineering. In the laboratory and in many industrial settings, one seeks to optimally
control a physical, chemical or biological system to induce a specific transformation using an
adequate resource set. In natural evolution, it is generally accepted that Nature is performing a
stochastic optimization expressed in the survival of the fittest. Although not humanly driven, we
also discuss evolution in a control context.

A control landscape is an objective function, or goal, subject to optimization by choosing control
parameters in a system. The landscape metaphor is established by considering the graph, or
higher dimensional analogue, of the objective as a function of the control parameters. The concept
of a fitness landscape in evolutionary biology was introduced [2], where it is prevalent. In recent
years, the study of control landscapes has focused extensively on quantum systems which evolve
according to Schrödinger’s equation within a well-defined mathematical structure. As such, this
work will primarily consider the inherent simplicity of control landscapes of quantum systems
and further present evidence that these features exist also outside of quantum mechanics and
propose an underlying mathematical basis for this commonality. In particular, evidence abounds
in chemistry and material science, evolution and engineering that control landscape behaviour
exists like that found in quantum mechanics.

Control systems come in many forms; however, there are generic mathematical structures
underlying many practical cases. In order to set the framework for the remainder of this paper, we
first describe a general class of mathematical problems given by a system of differential equations
comprising a physical model of the system under control

dx(t)
dt

= F(x(t), w(t)), (1.1)

where x(t) is the state vector at time t and w(t) is the control chosen by an experimenter or by
Nature as in biological evolution. This class of equations is vast and includes diverse examples
from many domains. The Schrödinger equation is of this form, as are some models used in
molecular dynamics and evolutionary biology [3]. In some cases, the variables defining the
structural form of F may also be considered part of the control.

In order to enquire about optimal control, one must have an objective function to optimize. This
function is often represented by: F [w] = J(x(T)), a function of the state at some given final time T,
which we seek to maximize by choosing (possibly time-dependent) control variables, or simply
controls, represented by w. Such functions are known as terminal cost/pay-off functions, as they
only depend on the state at some final time without additional ‘run-time’ costs depending on w(t).

In such scenarios, it becomes prescient to ask about the structure of the control landscape,
which is crucial in establishing the feasibility of finding optimal controls. We will render this
feasibility assessment in terms of two issues: (1) the existence of landscape traps and (2) the
landscape optimization convergence rate. Both of the issues relate strongly to the nature of the
algorithms seeking an optimal control. The presence of landscape traps, that is, sub-optimal
extrema, would call for a stochastic algorithm to ‘step over’ such features. The second issue
(2) addresses the search effort required to locate an optimal control. In laboratory cases, where
there can be hundreds of control variables present, out to biological evolution for which there are
approximately 109 gnomic sites for Nature to select nucleic acids, the success of a multitude of
experimental and natural optimization processes indicates that the structure of these landscapes
is favourable (i.e. free from traps under reasonable assumptions), permitting rapid convergence
despite the curse of dimensionality.

In principle, and perhaps intuitively, one might expect the complexity of many control systems
to result in landscapes that possess large numbers of local optima. We shall, however, argue that
a specific notion of complexity is favourable for control optimization rather than deleterious, to
actually reduce the possibility of traps. Figures 1 and 2 illustrate some low-dimensional (two
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Figure 1. A control landscapewith a plateau (showing a one-dimensional critical manifold of global optima) but nowith traps.
Landscapes of this type, or even with additional saddle features, are highly favourable for finding optimal controls. (Online
version in colour.)

Figure 2. A local gradient search climbing the landscape reaching either dead-end sub-optimal traps or the desired true global
optimum, depending on the starting point. Landscapes of this type, especially in high dimensions, are highly problematic for
finding optimal controls. (Online version in colour.)

control parameters) examples. In practice, typically, many more control parameters than two are
present and control landscapes cannot be directly visualized.

The critical point topology of a control landscape determines the behaviour of local optimization
algorithms, such as gradient ascent and even non-local stochastic algorithms could be greatly
hindered by a rough, high-dimensional landscape. An understanding of the critical point
topology, i.e. the set of controls where ∇F = 0, permits assessing the ease of finding optimal
controls. Saddle points could exist on some landscapes, but they would only slow down a
search rather than stop it from proceeding to full optimization. For an application of a gradient
method in laboratory practice, see [4] in which the algorithm is applied to spectrally filtered and
integrated second harmonic generation as well as excitation of atomic rubidium. In this work,
monotonic convergence to maximum fidelity is seen within practical laboratory time scales. Work
on assessing the experimental relevance of saddle points has also been undertaken [5] in which
their impact was found to be negligible, as theoretically expected.

The remainder of this paper is organized as follows. Section 2 summarizes the experimental
and simulation behaviour seen when seeking optimal controls in the domain of quantum
phenomena, chemistry and material science, and natural evolution. Importantly, this evidence
stands as a body of empirical facts on the favourable structure of landscapes that demands an
explanation, which we claim has a common foundation. Section 3 focuses on that explanation



4

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160210

.........................................................

in quantum control, wherein detailed and exacting mathematical models exist. Section 4 starts
with a brief summary of the situation in chemistry and material science, as well as evolution,
and the reader will be referred to the literature for specific details of these analyses. The most
challenging case of equation (1.1) covers such a wide range of behaviour that achieving a full
landscape analysis has not yet been achieved. But, we lay out the framework of conditions
for finding favourable landscapes in this broad class of systems and offer arguments that the
conditions plausibly hold. In this regard, we further offer a well-defined mathematical conjecture
to be investigated in the future. The evidence in §2 speaks to the validity of this conjecture across
varied domains, and, if further analysis expands the present support, it would offer a highly
unified picture of optimization across the sciences and engineering.

2. Evidence of common landscape structure in the sciences
Recent work [6] has identified evidence of common landscape structure from the control of
chemical, physical and biological evolutionary processes. Both the success of the optimization
throughout these diverse areas and the remarkably efficient search effort required are
summarized in table 1, alongside the nature of the sufficient conditions required to theoretically
establish this simplicity.

(a) Quantum control
Control of a quantum system using electromagnetic fields generally encompasses one of the
following tasks:

(i) Control the wave function (or density matrix ρ), as illustrated in figure 3, of a quantum
system to create a specific state transformation |ψI〉 �→ |ψF〉 [7,8].

(ii) Maximize the expectation of a particular quantum observable Ô expectation value [9].
(iii) Create a specific quantum gate G, which is a unitary transformation [10].

There is strong numerical [11,12], mathematical [13,14] and some experimental evidence [5,15]
that the landscapes of closed, finite-dimensional quantum systems are trap free, corroborating
the analytic claims when the assumptions are met. A few cases deliberately constructed to
possess traps [16–18] are, however, known. Work in [11] assesses the few known quantum control
examples with traps to better understand the volume of the traps. Analysis in [19] goes on further
to numerically search for and analyse the typical singularities in quantum control landscapes for
four level systems, and concludes that all the identified singularities are saddles. The work in
[20] studies the effect upon the landscape of terms beyond linear order in the control within the
Hamiltonian. An additional term, quadratic in the control field, is added to the Hamiltonian. It is
found that the effect on the control landscape involves the removal of some specific traps known
to exist without such a term. This finding is a step towards a general conjecture in §4 that nominal
system complexity aids the ability to find optimal controls.

In this work, we will focus on closed quantum systems, i.e. those which do not interact
significantly with their environment. However, there is existing work on the landscapes for
observable preparation in open quantum systems [21], and a proof that any two-level open system
(meeting simple further assumptions) is free from traps [22].

(b) Chemical yield and material property optimization
Evidence relevant to the quality of discovered optimal controls, and the optimization search
effort required to find them, abounds in chemical and material sciences [6,23]. These data
are from several different objectives corresponding to common goals in chemistry [23,24] of
chemical yield and material property optimization. A clear pattern is present, especially within
robotized experiments, that the number of samples required to obtain effective controls is
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E(t)

|ψI Ò �→ |ψFÒ

Figure 3. Amolecule under vibrational control by a laser field E(t). (Online version in colour.)

Table 1. Summary of landscape analysis evidence and nature of the associated sufficient conditions in different areas.
Importantly, the sufficient conditions which support the existence of trap-free landscapes in all three categories are essentially
the same, although the analysis methodology is different in each domain.

chemistry and

quantum control material science natural evolution

evidence implying
simplicity or
demonstrating a
trap-free landscape

extensive successful
numerical simulations
and some
experimentally
observed landscapes

many successful
experiments, including
direct landscape
observations

many diverse perturb and
observe experiments free
from evident traps, and the
existence of complex
life forms

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

sufficient assumptions
for proving the
structure of a
trap-free landscape

three precise physical
assumptions

the same assumptions as in
quantummechanics,
but also the ability to
manipulate the
environment

assumption that all probability
distributions over a species
population can be created
by appropriate genomic
variations

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

typically infinitesimal compared with the full search space of chemical and operating conditions.
This behaviour strongly suggests that the processes being optimized possess landscapes rife with
many global optima, with few or no traps, thereby permitting highly rapid ascent to a global
optimum in control space.

(c) Optimization in biological evolution
The concept of a fitness landscape is pervasive in natural evolution. In this context, the fitness
landscape in genetics can be thought of as a graph of genotypic allele frequency in a population,
against phenotype fitness [25], which is further developed in [26]. In this sense, the genes of a
species population (or even over multi-species populations) are the ‘controls’, and the fitness is
the optimality condition. However, many subtle variants exist in the exact nature of the fitness
studied including using population growth rate as a measure of fitness, or average number of
individual offspring.

One important means of assessing genetic landscapes for traps in the laboratory are ‘disturb
and observe’ experiments. In one form of such experiments, a small change is made to the genome
of an organism with a short life cycle, such as Drosophila fruit flies. Then the population of
such genetically ‘disturbed’ organisms is allowed to freely evolve and the average population
fitness is monitored to assess if it returns to the original, undisturbed value. If the fitness returns
to its original value, this is evidence that the fitness landscape, at least in the vicinity of the
initial genomic distribution, is free from local optima. In many known cases [26], the fitness was
seen to return to its original value but with a different genome indicative of a level set at the
top of the landscape, as shown in figure 2. Beyond such laboratory experiments lies the most
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stark evidence—that complex organisms exist. The period of time taken for the appearance of
bacteria, and beyond to higher forms of life, as only a few billion years, is very short given their
inherent complexity and the required multitude of elaborate evolutionary steps. These findings,
particularly the latter, have left a puzzle especially considering that intuition would suggest that
evolutionary landscapes with approximately 109 nucleic acid sites would be very rugged.

The evidence in the scientific domains of quantum mechanics, chemistry and material science,
and evolution exists in a vast body of the literature, which must be taken as foundational facts to
be reconciled, perhaps individually in each domain, or more enticingly in a sweeping consistent
manner as indicated in the second portion of table 1 and the remainder of this paper. The details
in treating the evidence differ in swinging between domains, but the analyses are similar, which
eventually leads to conjecturing that the scope of observed landscape behaviour extends to the
general structure of equation (1.1) upon satisfaction of three assumptions, enumerated in the
remainder of the paper.

3. Specification of landscape assumptions for quantum control
As the above evidence points towards the existence of common features in the optimal control
of systems arising in diverse areas of science, this finding provides an enticing incentive to
seek a unifying explanation for the origin of this simplicity. The focus of the analysis in the
literature thus far has been in quantum control, which, of all the domains, has the most detailed
mathematical foundation to rest on. This foundation has aided in assessing the way in which
the key assumptions (i.e. sufficient conditions), and the conclusions they imply about trap-free
control landscapes, generalize to systems outside of quantum mechanics.

In [27], the first essential principles of the analysis of quantum control landscapes were
set out, as were a nascent version of the three assumptions sufficient for trap-free quantum
control landscapes which are summarized below, and later generalized in §4. Shortly after the
introduction of the ‘photonic reagent’ control concept [28], the search effort required for the
discovery of effective quantum controls was quickly identified to be dramatically less than
expected, both in simulation and in mounting numbers of experiments.

While the case of a quantum system controlling another [29] does fall within the class of
nonlinear control problems studied in this work (1.1), here we restrict our attention to quantum
systems under control by semi-classical fields, as is typical throughout the vast majority of the
quantum control literature. Closed systems evolve in time according to the Schrödinger equation:

dUt

dt
= iH[w(t)]Ut, (3.1)

which is an example system of (1.1) for which the propagator Ut evolves on the Lie group of n × n
unitary matrices U(n). Here, the Hamiltonian H[w(t)] depends on the time-dependent control
function w(t), which often represents an external laser field (i.e. a photonic reagent). A common
approximation in physical scenarios where the quantum state of a molecule is controlled by a
laser is the dipole approximation:

H[w(t)] = H0 + w(t)Hc. (3.2)

For dipole systems of the form in (3.2) (which includes the control of nuclear spins in nuclear
magnetic resonance), an in-depth landscape analysis has been performed for a control which
implements a desired unitary transformation [30], quantum state transfer [31] or maximizes a
desired quantum observable [32]. The satisfaction of a set of three simple assumptions is known
to guarantee that the control landscape in the dipole approximation is free from traps in all
these cases.

In the discussion of quantum control in this work, the cost function,

J(U) := |Tr(G†U)|2, (3.3)
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will be used to measure how well the unitary goal gate G was implemented by a system for
which the end-time propagator is UT ≡ U. Given a system where the assumptions hold, there
may still be sub-optimal critical points introduced into the landscape by the cost function J itself
(3.3); however, these are known analytically to all be ‘benign’ saddles [33] rather than true local
optima.

The three assumptions of this analysis are described below and a proof that they are sufficient
for a trap-free landscape is included in appendix A.

(a) Assumption I: the system is controllable
The definition of controllability is: the final time T and Hamiltonian H are such that for every
objective evolution of the system there exists at least one control w such that UT = G. For
systems in the dipole approximation (3.2), a criterion ensuring controllability exists [34,35]. This
criterion, known as the Lie algebra rank condition, is necessary and sufficient for controllability. It
states that H0 and Hc must ‘generate’ the whole algebra of observables (Hermitian matrices),
in the sense that a basis can be created from a succession of Lie bracket expressions of the
two generators, {H0, Hc, [H0, Hc], [[H0, Hc], H0] . . .}, in order for the system to be controllable.
For a visual representation of checking this criterion, see [36]. It is further known that for
typical quantum systems of the form (3.2) the criterion holds [35]. Specifically, only a null set
of Hamiltonians (a set of zero measure, or equivalently probability zero, if cases are chosen at
random) fail to be controllable.

(b) Assumption II: the system is locally controllable in the direction of the cost function
gradient

Local controllability is defined as the ability, given any control, to arbitrarily vary the system’s
state at the final time by varying the control infinitesimally. The required landscape condition is
a special case of this property, as we only require that the state at the final time can be varied in
one specific direction. More explicitly, the second assumption is: for all controls w(t) there exists a
small change in the control δw such that δUT has some component in the direction ∇J. That is,

〈∇J|UT , δUT〉 �= 0, ∀δw. (3.4)

This expression means that the control can be varied slightly to increase the objective function J
by ‘steering’ UT in the direction ∇J and thus towards the goal (i.e. in the direction of increasing J).
Informally, this criterion is simply that it is possible to ‘steer’ the system up the landscape by
a small variation of the control. This property can also be proved to typically hold, even well
beyond systems in the dipole approximation. Specifically, it has been shown that, in analogy with
the results of [35], this second assumption only fails for a null set of Hamiltonians. For a detailed
discussion of the somewhat technical underlying mathematics of this result, which is based on an
application of the parametric transversality theorem [37], see [38].

(c) Assumption III: the control resources are unrestricted
This assumption means that the control w is not limited in its form. However, in practice there are
always restrictions on the control in the laboratory. Although this assumption technically needs
to be adopted in order to mathematically prove that quantum control landscapes are almost all
trap free, in practice adequate freedom in the control often suffices. Pragmatically, this reduces to
allowing the control to have sufficient freedom to exploit assumptions I and II [39]. For a review
of quantum control landscapes in the presence of severe constraints, see [40–44]. A commonly
applied constraint is to limit the total field fluence: Q = ∫T

0 |E(t)|2 dt; this constraint is known to be
able to introduce traps into the landscape above a certain critical value. We generally expect that
traps will appear in quantum control landscapes when severe constraints are imposed upon the
control fields. However, the exact conditions when constraints introduce traps into the landscape
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is not known analytically and could form the basis of future work as it is a topic with practical
significance.

To reiterate the main conclusion: upon satisfaction of all three assumptions about quantum
control, it is known that almost all landscapes are free from traps.

4. Landscapes beyond quantummechanics
Building on the previous results, this section draws a general conclusion and conjectures about
about the behaviour of a wide class of controlled phenomena under optimization. Initially, the
landscapes of linear time-invariant (LTI) systems are analysed and compared with the quantum
system case, then some analysis and a conjecture are offered on the fully nonlinear case (1.1). We
simply remark that the landscape analysis for chemical and material science and for evolutionary
biology follow a somewhat different track due to their complexity and the general nature of being
open to the environment. See the sufficient conditions in table 1, and details in [24,26].

There is large freedom to choose a cost function J for both LTI (see (4.2)) and nonlinear systems.
For control systems, both LTI and nonlinear, which evolve on R

N , a common and favourable
choice is

J(X) = ‖X(T) − XG‖2, (4.1)

where X(T) is the final time state and XG is the goal (to be minimized in this case). This function is
straightforwardly confirmed to possess no saddles or local optima by a gradient calculation. For
systems which evolve on more general state spaces than R

N , other cost functions are appropriate
and a fully general canonical choice is not widely agreed upon. However, the conclusions of this
work apply to any cost function J which possesses no local optima of its own as a function of the
state (rather than the control), even in the fully nonlinear case.

(a) Autonomous linear systems with unrestricted controls are almost all trap free
The study of linear control systems is pervasive in theory [45,46] and applications [47], which
motivates the study of their landscapes, as does the potential for using them as a stepping stone
to analysing the landscape of the fully nonlinear case (1.1).

LTI systems are defined by the equation:

dX
dt

= AX(t) + w(t)b, (4.2)

where X(t) ∈ R
N is the state vector, A is an N × N matrix, b ∈ R

N is a vector coupling to the control.
Equation (4.2) warrants explicit comparison with (3.1), which is a bilinear control system as a
product of the state and the control is present.

For system (4.2), it is possible to check the three assumptions of landscape analysis directly,
showing that they almost always hold in the space of all systems of form (4.2).

(i) Assumption I: the system is controllable

The first assumption of controllability has a clear analogue to that of assumption I in quantum
control, i.e. all states X can be obtained by applying some control w(t). A sufficient condition for
this to hold is known. One must check that the controllability matrix is full rank [46], particularly
that the columns of

[b, Ab, . . . , A(N−1)b] (4.3)

form a basis, or equivalently that b is a cyclic vector of A. One can readily check that this property
holds for typical A and b (see appendix B) in a similar sense to the quantum case. An analogous
condition is developed for the linear time-varying case in [48].
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(ii) Assumption II: the system is locally controllable in the direction of the cost function gradient

LTI systems uniquely have the property that controllability is equivalent to local controllability
(see appendix C), and thus it follows that assumption II holds whenever assumption I holds.

(iii) Assumption III: the control resources are unrestricted

In the LTI context, this assumption remains unchanged compared with the quantum control case.

(b) Control of nonlinear systems
In this section, landscapes for systems of the form (1.1) will be discussed. See also the paper by
A. Fradkov [49], which introduces this theme issue on Norbert Wiener.

We first note that the Schrödinger equation and the LTI equation are special cases of (1.1), as
well as a Schrödinger equation nonlinear in the control [20,50]. The primary open question is
that of the fullest possible scope of the landscape observations in this paper. To tentatively assess
this topic, we investigate the same three assumptions in this broader context of the control of
nonlinear systems.

We see that the first assumption of global controllability can be assessed in a wide variety of
cases and that it is known to hold for a large and practically relevant class of nonlinear control
systems. We further argue that the third assumption is on an identical footing to the LTI and
quantum control cases. The conclusion of this section is that gaining a deeper understanding of
the second assumption is central to a fuller analysis of the landscapes of nonlinear systems in
general.

In the quantum case, it was shown that almost all (in a specific sense that the failing set is null)
quantum control systems are locally controllable. We argue that the same mathematical tool set as
that used in quantum mechanics [38] can be deployed in the assessment of the status of the second
assumption in the nonlinear case, but we do not give a full proof that the analogous conclusion
holds in the nonlinear case. We highlight that assessing the status of the second assumption in the
nonlinear case is the key open issue in understanding their control landscapes.

(i) Assumption I: the system is controllable

Criteria for the controllability of several large classes of nonlinear systems are known [51–53].
Specifically and importantly, the closest generalization of the controllability conditions applied
to quantum (bilinear) and LTI control systems are developed in [51,54], wherein it is shown that
a sufficiently small nonlinear term added to an LTI system will not violate global controllability.
This circumstance allows the conclusions about assumption I—that almost all LTI and quantum
systems are globally controllable—to be pushed directly through to nonlinear systems.

In [54], several ‘rank’ conditions are described, which are analogous to the results in [35] for
quantum systems and to [55] for LTI systems. In [51], it is shown that if a system has a controllable
linear part and the nonlinear part is ‘small enough’ in a specific and unrestrictive sense, then the
overall system is also globally controllable. It follows from the observation that almost all LTI
systems are controllable and the conclusions of [51] that a very rich class of nonlinear control
systems are globally controllable. In this sense, understanding the linear case serves as a gateway
to understanding which of the nonlinear family of systems are globally controllable, and to
constructing a multitude of globally controllable examples.

(ii) Assumption II: the system is locally controllable in the direction of the cost function gradient

One measure of the complexity of a control system is its degree of local controllability (i.e. the
number of linearly independent directions the state can be steered in by infinitesimally varying
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the control). These quantities can be expressed as:{
∂X
∂wk

}
(4.4)

for each control variable wk or, if the control is a function of time, as the functional derivative:{
δX
δw(t)

}
. (4.5)

If the span of the set of all such derivatives contains ∇J for every control, then it is possible to
infinitesimally vary the control in a way which increases J everywhere on the system’s landscape.
The gradient of fidelity with respect to the control is then non-zero, and gradient ascent can
continue to increase fidelity. The presence of more variables (i.e. nominally, additional system
complexity) can aid the simplicity of optimal control by better ensuring the satisfaction of
assumption II. For important work offering conditions on the local controllability of nonlinear
systems, see [56], and for an assessment of their local controllability specifically at equilibrium
points, see [57].

(iii) Assumption III: sufficient resources

The overall nature of the required resources in the control of nonlinear systems is parallel to
that in LTI and quantum control. In the case of unconstrained resources, the argument that
the control landscape will be trap free (given the satisfaction of the other two assumptions) is
identical to the quantum and LTI cases (appendix A). Further work is needed to investigate the
effect of nonlinearity on which resource constraints introduce landscape traps, as this remains an
open issue.

Importantly, satisfaction of the three assumptions for a nonlinear system is sufficient to ensure
a trap-free landscape. However, we at this time cannot assess what is typical for nonlinear systems
in the same sense as the quantum or LTI cases. The fullest range with which the three assumptions
hold remains open for investigation and is a topic of prime importance.

5. Conclusion and future work
We have reviewed numerical and experimental evidence motivating a unifying mathematical
framework for understanding control landscapes. We presented the state of the field of quantum
control landscapes, and explained the generalization of these ideas to the control landscapes of
more general systems. It has further been argued that an explanation for this commonality may
be found in the control landscapes of general nonlinear control systems. It is very interesting that
system complexity should be conducive to the simplicity of landscape critical point topology,
as singular critical points are known to be very unlikely to exist in this scenario. Furthermore,
§§3 and 4 clearly indicate that the same set of primary assumptions apply to establishing control
landscape topology for a vast expanse of systems and domains.

It is interesting to note that, within the optimal control problems discussed herein, a function
of the following form is being optimized:

F(w) := J(xT(w)). (5.1)

The ‘no free lunch’ theorem [58,59] states that, averaged over all functions to optimize, no one
algorithm outperforms any other. It is notable that this result is not an issue in control as only a
special functional form is being optimized. This is consistent with the results and observations
in this work, and we further speculate about the existence of a free lunch upon seeking optimal
control.

There are many additional directions to explore in the domain of general system control
landscape analysis. These include systems having time-dependent drift dynamics and stochastic
systems. For the systems analysed in this paper, all time dependence enters the systems through
the control.
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Based on the experimental, analytic and numerical evidence discussed, the authors conjecture
that systems of the form (1.1) are almost all trap free and that their convergence rate to a globally
optimal control can be shown to imply that only a small fraction of the control space needs to be
explored to discover such an optimal control. Yet, the fullest extent to which there is a free lunch
in control remains to be resolved and stands as a challenge to assess.
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Appendix A. Proof that assumptions are sufficient for a trap-free landscape
Given a control system of the form (1.1), here an informal proof is given that the three assumptions
are sufficient for a trap-free landscape. Firstly, we assume that the cost function J is trap free itself.
Secondly, we denote the manifold of states by M and the control space by C.

We will denote the endpoint map by VT, which maps a control w to the corresponding solution
to (1.1), and the overall fidelity of a control w to be F [w] = J(VT[w]). The overall derivative of
fidelity with respect to the control can be obtained by the functional derivative chain rule

δF
δw

= δJ
δxT

◦ δxT

δw
. (A 1)

Here the three assumptions are rephrased in geometric terms. In these terms assumption I, which
is controllability, is that VT is a surjective function VT : C → M when all controls are permitted,
which is itself exactly assumption III. Assumption II, which is sufficient local controllability, is
that the image of the derivative (push forward) δVT|xT is not orthogonal to ∇J|xT for all controls
w ∈ C. The three assumptions together yield two geometric properties of VT and subsequently
of F . Firstly, ∀g ∈ M, ∃w ∈ C s.t. VT[w] = g. Secondly, there does not exist a control w ∈ C s.t.
〈dVT|xT [δw], ∇J|xT 〉 = 0.

Examining equation (A 1), one sees that there are two types of critical points δF/δw = 0. The
case δJ/δxT = 0 is excluded by assumption that J does not possess traps of its own. The second
case δxT/δw = 0 is excluded by assumption II—that 〈dVT|xT [δw], ∇J|xT 〉 = 0.

Assumptions I and II together imply that the image of VT is the full space of states. The
assumption II 〈dVT|xT [δw], ∇J|xT 〉 = 0 implies that the image of δxT/δw is not orthogonal to ∇J|xT .
Together these two statements imply that gradient ascent can continue until the objective is
maximized, as away from the global maxima and minima of F the gradient is not zero, and the
objective can be maximized due to controllability. Together these statements imply that gradient
ascent can maximize J, and that the landscape is free from traps.

We further note that if J is known to possess saddles (as is the typical case in quantum
control [60]), then these only translate into saddles on the control landscape rather than true traps.

Appendix B. Linear time-invariant systems are almost all controllable
One can readily check that, over all A, b, the probability of selecting a non-controllable system
is zero or, equivalently, that the set of A, b which corresponds to uncontrollable systems forms a
null set. First note that the probability of selecting diagonalizable A is one when A is chosen at
random. Thus, it will have distinct, non-zero eigenvalues from which it follows that

[b, Ab, A2b, . . . , ANb] = Q[c, Dc, D2c, . . . , DNc],

where c = Q−1b. Now observe that the determinant of the controllability matrix (4.3) is equal to
the determinant of the Vandermonde matrix generated by the eigenvalues of A (an say) and the
matrix diag(c), i.e. det(V)diag(c) = c1 . . . cN det(V). This determinant is clearly non-zero unless any
an is zero, which itself happens with probability zero.



12

rsta.royalsocietypublishing.org
Phil.Trans.R.Soc.A375:20160210

.........................................................

Appendix C. Equivalence of assumptions I and II for linear time-invariant
systems
The variation of the endpoint map can be found directly from the LTI defining equation to also be
an LTI equation,

δX(t) = A(δX)(t) + (δw)(t)b.

We also note that the endpoint map for an LTI system, unlike almost all nonlinear systems, can
be found in closed form,

X(T) = CetAX(0) +
∫T

0
w(t)e(T−t)Ab dt.

See any text book on LTI control systems for this derivation.
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