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An Often Overlooked Dimension to Cardiovascular Disease
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Abstract: Diurnal rhythms influence cardiovascular physiology such as heart rate and blood pressure and the incidence
of adverse cardiac events such as heart attack and stroke. For example, shift workers and patients with sleep
disturbances, such as obstructive sleep apnea, have an increased risk of heart attack, stroke, and sudden death.
Diurnal variation is also evident at the molecular level, as gene expression in the heart and blood vessels is remarkably
different in the day as compared to the night. Much of the evidence presented here indicates that growth and renewal
(structural remodeling) are highly dependent on processes that occur during the subjective night. Myocardial
metabolism is also dynamic with substrate preference also differing day from night. The risk/benefit ratio of some
therapeutic strategies and the appearance of biomarkers also vary across the 24-hour diurnal cycle. Synchrony
between external and internal diurnal rhythms and harmony among the molecular rhythms within the cell is essential
for normal organ biology. Cell physiology is 4 dimensional; the substrate and enzymatic components of a given
metabolic pathway must be present not only in the right compartmental space within the cell but also at the right time.
As a corollary, we show disrupting this integral relationship has devastating effects on cardiovascular, renal and
possibly other organ systems. Harmony between our biology and our environment is vital to good health. (Circ Res.
2009;105:1047-1061.)
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“Our body is like a clock; if one wheel be amiss, all the
rest are disordered, the whole fabric suffers: with such
admirable art and harmony is a man composed.”
—Robert Burton, 1621

The last century has seen a detailed dissection of the
molecular events underlying human biology. Although

the physiology of organ systems, particularly the cardiovas-
cular, was known to exhibit rhythmic activity over the

24-hour day, cell biochemistry was considered by most as a
continuous activity localized in the different compartments of
cellular space. The recent discovery of actual molecular clock-
work mechanisms inside virtually all of our cells has added time
as a critical fourth dimension of cellular physiology.

Cardiovascular tissues show significant daily variation in
physiological processes, molecular gene, and/or protein ex-
pression. An increasing number of experimental and clinical
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studies reveal that coordination of these rhythmic processes is
a key fundamental mechanism underlying healthy organ
growth and renewal. This review will focus on circadian
rhythms and cardiovascular disease, a relatively recent area of
research, which holds great promise. Other reviews in this
series will discuss the cardiomyocyte circadian clock, the
vascular clock and function, and the clock and cardiometa-
bolic syndromes. Thus, we will assume a basic understanding
of the molecular circadian system (Figure 1 and excellent
reviews1–3). Also, we will take a translational approach,
focusing primarily on myocardial disease excluding any
in-depth discussion of the important areas covered in several
earlier reviews on heart and vascular circadian clocks.3,4

“Circadian” classically refers to the endogenous 24-hour
cycle maintained in the absence of light; the term “diurnal”
refers to conditions under which there is both an endoge-

nously generated circadian cycle and one modulated by
external cues (zeitgebers) from the environment, predomi-
nantly light. Light is the main zeitgeber for the master clock,
which is located in the suprachiasmatic nucleus (SCN) of the
hypothalamus; the clocks in mammalian peripheral tissues
are of course opaque to light and thus their coordination or
modulation depends on central neural and hormonal signals
derived from the SCN or peripheral zeitgebers such as
activity and feeding. Humans are diurnal and live under
normal 24-hour light and dark cycling (not dim or dark or
“pure” circadian) conditions. Before the advent of substantive
artificial lighting a century ago, our lives were synchronized
to the natural light/dark rhythms defined by sunrise and
sunset; we were active in the light of day, and slept at night.
In contrast most rodents used in circadian (and other) re-
search are nocturnal, ie, the rodent night is their subjective
human day.

Circadian clock gene expression is a property of virtually all
tissues except perhaps the testes.1,5–11 The core genetic constit-
uents of the cellular circadian clock: clock, casein kinase 1�
(CK1�), period (per1, per2), arntl (bmal1), rev/erb-a, and
cryptochromes comprise an autoregulatory feedback loop that
cycles approximately every 24 hours. Neurohormones particu-
larly relevant to the cardiovascular system, such as melatonin,
glucocorticoids, catecholamines, growth hormone, atrial natri-
uretic factor, angiotensin II, aldosterone, and renin exhibit
diurnal variation12–16 and possibly synchronize peripheral tissue
molecular circadian clocks with the SCN.17–22

Diurnal Patterns of Heart Rate and Blood
Pressure As Risk Factors for

Cardiovascular Disease
The rhythmic changes in heart rate (HR) and blood pressure
(BP) over the day night cycle are regarded as reflections of
the diurnal variation in sympathovagal balance and have been
used as clinical tools to monitor the function of the autonomic

Non-standard Abbreviations and Acronyms

ACE angiotensin-converting enzyme

BP blood pressure

GSK glycogen synthase kinase

HR heart rate

L:D light:dark

OSA obstructive sleep apnea

PAI plasminogen activator inhibitor

PCR polymerase chain reaction

SCD sudden cardiac death

SCN suprachiasmatic nucleus

SHR spontaneously hypertensive rat

TAC transaortic constriction

VIP vasoactive intestinal peptide

WKY Wistar–Kyoto rat

Figure 1. These 7 steps comprise the basics of the cellular molecular circadian clock mechanism. This transcriptional/translational
autoregulatory feedback loop cycles every 24 hours to “keep daily time” and thus coordinates hundreds or thousands of physiological
processes so that they can occur during an optimal time of day.
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nervous system. HR and BP are lowest at nighttime, during
sleep, and in the early morning hours, coinciding with the
period of vagal dominance and begin to rise before the time
of wakening in anticipation of the demands of our daytime
activities; they decrease again in the evening anticipating
sleep. Normal blood pressure across the diurnal cycle exhibits
a 10% decrease at night, with a pressure surge in the morning
just before and on awakening.

Blunting of normal heart rate variability has been associ-
ated with an increased risk of sudden cardiac death, particu-
larly after myocardial infarction and in diabetic patients. Until
recently, this variation has been solely attributed to diurnal
rhythms of the autonomic nervous system; it now appears that
there is an important contribution by the molecular clock
within the cardiomyocyte. Cardiomyocyte specific clock
mutant (CCM) mice exhibit an attenuation of diurnal heart
rate variability in the absence of any overt conduction system
abnormalities.23

Hypertension is a risk factor for cardiovascular and renal
disease; the diurnal pattern of BP cycling adds another
dimension to our prognostic assessment. Patients with hyper-
tension fall into 2 main groups of aberrant diurnal blood
pressure profiles. One group parallels the cyclic variation in
pressure exhibited by normotensives, including the nocturnal
“dip” in blood pressure but at an elevated overall level. The
second group, referred to as “nondippers,” fail to exhibit the
normal 10% decrease in nocturnal BP, and a few even exhibit
an increase. Nondippers have an increased risk for target
organ damage, including greater left ventricular hypertrophy
and increased risk of myocardial infarction and renal fail-
ure.24 Although a number of extrinsic factors can affect
diurnal BP profiles, such as sleep quality,25 particularly
obstructive sleep apnea (OSA), these changes in BP profiles
are often mirrored by dysfunctional autonomic or sympa-
thetic nervous activity. For example, hypertensive patients
with aberrant rhythmic BP profiles exhibit significantly
higher muscle sympathetic nerve traffic and similarly im-
paired baroreflex–sympathetic control, as compared to nor-
motensive controls.26 In patients with type 2 diabetes, noc-
turnal BP variability is an independent predictive factor for
increased risk of adverse cardiovascular events.27,28 Finally,
recent studies have shown that vessels from bmal1 knockout,
clock, or per2 mutant mice exhibit aortic endothelial dysfunc-
tion.29–31 It appears likely that some of these abnormal blood
pressure rhythms reflect intrinsic abnormalities of the vascu-
lar endothelial molecular clock. The molecular clockwork
mechanism is also implicated directly in regulating daily
variation in blood pressure and response to stress.32

The Diurnal Timing of
Cardiovascular Disease

The timing of onset of adverse cardiovascular events exhibits
a diurnal rhythm. For example, onset of myocardial infarction
in humans exhibits a daily rhythmic pattern with highest
incidence between 6:00 AM and 12:00 PM33,34; the nadir occurs
between 3:00 AM and 6:00 AM. Infarcts are approximately
three times more likely to occur early in the morning as
compared to late at night. Mukamal and colleagues35 ob-
served that patients with nocturnal infarcts had a far greater

risk of developing congestive heart failure; this was unrelated
to Q-wave status, �-blocker treatment, or the time between
symptom onset and treatment. Nocturnal infarcts occurred
more frequently in patients with OSA as compared to those
without the sleep disorder.36

Sudden cardiac death (SCD) is another adverse cardiovas-
cular event exhibiting diurnal timing. The diurnal pattern of
onset of arrhythmic SCD was first extrapolated on the basis of
two large retrospective studies.37,38 A database derived from
mortality records of the Massachusetts Department of Public
Health revealed a rhythm of occurrence of SCD that peaked
in the early morning.37 The Framingham Heart Study sup-
ported these data by revealing an identical SCD diurnal
rhythm.38 Prospective clinical studies have documented diur-
nal rhythms in ventricular refractoriness39 and in defibrilla-
tion energy requirements40; each of these peaked in the early
morning hours, providing additional corroboration for a
diurnal variation in SCD.

Investigation of implanted cardioverter defibrillators has
allowed the analysis of precursor threatening ventricular
tachyarrhythmias. The diurnal distribution of ventricular
tachyarrhythmia events was shown to exhibit a sharp increase
in number of events in the early morning hours41; patients
with markedly impaired ventricles at the time of implantation
demonstrated much less diurnal variation.42

Rupture and dissection of aortic aneurysms also display
diurnal rhythms. Again, patients were at significantly in-
creased risk for these events in the early morning hours, with
peak occurrence between 8:00 AM to 11:00 AM.43–45

There are several studies supporting the view that the
timing of onset of adverse cardiovascular events is linked
directly to the intrinsic clock mechanism, as opposed to the
“stress of awakening.” For example, a retrospective study of
SCD on the Hawaiian island of Kauai46 revealed that the
prevalence of SCD peaked from 6:00 AM to noon for
Kauaians; however, it peaked from noon to 4:00 PM for recent
visitors, corresponding to early morning in Japan. Krantz and
colleagues47 studied 63 patients with stable coronary artery
disease using a well-validated structured diary with ECG
monitoring; the results further supported the concept that an
intrinsic diurnal mechanism influenced timing of onset of
adverse cardiovascular events, rather than increased physical or
mental activity. Hu and colleagues48 used a mathematical anal-
ysis of heart beat dynamics; their data also supported the
hypothesis that intrinsic diurnal influences on cardiac control, as
opposed to extrinsic behavior may be involved in the diurnal
pattern of adverse cardiac events in vulnerable individuals.

Finally, diurnal rhythms have also been documented for
precursor risk factors such as vasomotor tone, platelet aggre-
gability, and other factors involved in thrombosis or
thrombolysis.49–52 Plasminogen activator inhibitor (PAI)-1 is
a primary regulator of the fibrinolytic cascade, and activity
and mRNA abundance exhibit circadian variation which
peaks in the morning,53 consistent with the increased risk of
myocardial infarction at this time.33,34 The pattern is believed
to be related to the core molecular clock mechanism. For
example, clockwork components such as CLOCK:BMAL50,54

and PERIOD255 help regulate circadian variation in PAI-1
gene expression in cardiovascular tissues. Conversely, PAI-1
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gene rhythms are reduced in the hearts of circadian mutant
mice,56 phase-altered with restricted feeding regimes,56 and
altered in atherosclerosis apoE�/� mice.57 Diet patterns57,58

and angiotensin (Ang) II receptor–mediated signaling mole-
cules59 modulate PAI-1 circadian expression patterns, in an
organ-specific manner. Thrombomodulin also plays an im-
portant role in regulation of blood coagulation, and thrombo-
modulin mRNA and protein display circadian patterns and
appear to be under control of circadian clock molecules in
vascular endothelial cells.60 Recently, Anea et al29 demon-
strated impairment of normal protective endothelial responses
to vascular injury with intensified pathological remodeling
and a predisposition to vascular thrombosis in bmal1 knock-
out mice or clock mutant mice. Pathological responses in
clock mutant mice were only evident under conditions of
constant darkness when the intrinsic circadian defect was
manifest; they were not present when the tissue molecular
defect was overridden (rescued) by the central clock by
housing the mice under normal light/dark (L:D) conditions.
Mechanistically, these changes were associated with disrup-
tion of the normal phosphoinositide-dependent kinase 1, Akt,
and endothelial nitric oxide synthase signaling pathways and
were exacerbated by age. Westgate and colleagues61 demon-
strated the functional influence of circadian clock genes on
regulation of diurnal thrombogenic responses to stimulus in
vivo, using a photochemical injury model applied to the
mouse femoral artery. Taken together, these data strongly
link responses of the molecular clock in vascular tissue to
day/night variation in cardiovascular events in humans.

Cardiovascular Gene Expression Differs Day
Versus Night

Cardiomyocytes do not replicate after development, although
recent evidence supports a very low and continuing rate of
renewal from as yet an unknown source of progenitor cells.62

In contrast, cardiomyocytes turn over their protein contents
and lipid membranes every few weeks, in effect renewing cell
structure63; for example, the contractile protein myosin turns
over with a cardiomyocyte half-life of approximately 15
days.64 Until recently, clinical medicine had seen this biology
as a continual cellular housekeeping activity, which occurred
uniformly over the 24-hour day.

Diurnal Gene Expression in Heart and
Vasculature by Microarray/Polymerase
Chain Reaction
The first global microarray approach examining gene expres-
sion cycling in the murine heart was published in 2002.10 The
study investigated rhythmicity under circadian conditions,
and found that a remarkable 8% to 10% of genes expressed in
the heart undergo cyclic rhythms. As most life occurs under
varying L:D conditions, and because the diurnal environment
is most relevant to humans, it is important to understand
global gene expression in the heart under diurnal conditions.
Diurnal expression of cardiac core clock genes, such as per
and bmal1 in the rat heart, had been reported by Young and
colleagues using quantitative polymerase chain reaction
(PCR)11,65; their data were identical to that reported in a
circadian environment.

The behavior of the transcriptome however may differ
under influence of L:D cycles. Therefore, we examined, for
the first time, the cardiac murine transcriptome under normal
24-hour diurnal L:D conditions, using a microarray and
bioinformatics approach.8 Approximately 13% of the cardiac
transcriptome was rhythmic under normal 24-hour diurnal
L:D. The microarrays revealed that cycling of core clock
mechanism genes was similar under diurnal L:D versus
circadian conditions8,10; however, expression of many addi-
tional genes cycled or changed in the heart only under diurnal
conditions, presumably in response to the zeitgeber triggers
(light, activity, feeding) so relevant to our daily physiology.8

In our studies, radar diagrams illustrated two principal peaks
in cardiac gene expression; one in the light phase and a
second in the dark phase (Figure 2). A third gene subset was
identified that exhibited an abrupt change specifically at L:D
transition times (Figure 3). The microarray gene expression
profiles were also classified by the Gene Ontology Consor-
tium; those that varied under diurnal conditions mapped to
key biological processes such as cardiac metabolism, growth
and remodeling, transcription, translation, and molecular
signal pathways; many of these genes appear to be controlled
by the cardiomyocyte circadian clock.23

The observations of diurnal gene cycling have been ex-
tended to vascular tissues such as aorta66–69 and vascular cells
in culture.21,32,68,70–73 Using microarrays and bioinformatics,
we examined gene expression in the aorta under normal
24-hour diurnal L:D conditions.67 The data revealed a major
peak in the light and a major and second minor peak in the
dark (Figure 2). Notably, these peaks occurred at different
times than those in the heart. Rudic et al9 also examined gene
expression in the aorta under circadian conditions. They
consolidated the data into functional cassettes to demonstrate
that rhythms were especially relevant to genes important for
vascular structural integrity and metabolism. Taken together,
these studies established that gene expression in heart and

Figure 2. Rhythmic gene expression in normal heart and aorta
under L:D conditions is examined by microarray and bioinfor-
matics and plotted on a radar diagram.8,67 Phase histograms
show only the genes with robust cycling profiles. Global gene
expression in the heart shows a biphasic pattern with 2 major
peaks, 1 in the light and 1 in the dark; the aorta reveals similar
major light and dark peaks; however, these peaks occur at
slightly different times than those for the heart; there is also a
third minor peak in the aorta, which occurs in the dark. Presum-
ably the specificity of peak and phase serves to ensure that cel-
lular processes occur during a biologically optimal time of day
for each tissue/organ. Modified from Martino et al.67
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vasculature is rhythmic and dramatically different day versus
night.

We also examined diurnal gene expression in murine heart
and vasculature in a model of cardiovascular pressure over-
load following thoracic aorta constriction (TAC) in the
mouse. Surprisingly, rhythmic expression patterns of core
cycling genes (eg, per2, bmal, etc) were virtually superim-
posable in time, that is, the core-cycling transcriptome main-
tained the same period and phase in TAC pressure overloaded
heart and vasculature as compared to normal controls.67 In
contrast, very different rhythmic profiles were observed for
many other genes that were noncore clockwork. Some that
were important for remodeling exhibited dramatically differ-
ent 24-hour patterns in pressure overloaded hearts versus

controls (Figure 4A and 4B). Expression patterns of these
genes exhibited statistically reproducible 24-hour profiles,
although, notably, they did not conform to the classic rhyth-
mic (or mathematical cosine-wave) diurnal pattern. Further
investigation of these de novo gene patterns could provide
novel insights into the diurnal molecular biology of the heart.

Young et al,11 in the TAC rat, and Mohri et al,74 in the
salt-fed Dahl salt–sensitive hypertensive rat have also re-
ported conservation of phase for clock gene expression.
Young and coworkers suggest that phase alterations may
occur in some pathologies, reporting a phase shift in the
expression of circadian clock genes in the streptozotocin-
induced diabetic rat.75 Naito et al76 studied the circadian
variation of gene expression for various components of the
renin–angiotensin system in spontaneously hypertensive rats
(SHRs) and control Wistar–Kyoto (WKY) rats. The ampli-
tude of mRNA expression of renin, angiotensinogen, angio-
tensin-converting enzyme (ACE), and angiotensin type 1a
and type 2 receptors were greater in the SHRs as compared to
WKY, particularly during the dark phase. The phase relation-
ships of the expression of these genes between WKY and
SHRs were complex.

Diurnal Chromatin Remodeling
It is becoming increasingly evident that regulation of molec-
ular gene rhythms involves chromatin remodeling. Histone
modifications such as acetylation/deacetylation alter stability
and condensation of histone-histone/DNA interactions, thus
controlling access of transcription factors to DNA. In a recent
landmark study it was shown that transcriptional regulation of
the core clock mechanism in murine liver was accompanied
by rhythms in H3 histone acetylation.77 Mobilization of
transcriptional coactivators and histone acetyltransferases is
also rhythmic.71 Remarkably, the CLOCK protein itself has
also been shown to have histone acetyltransferase activity.78

A molecular clock component can catalyze chromatin remod-

Figure 3. The subset of cardiac genes illustrated here show
remarkably abrupt changes in expression only at the L:D transi-
tion times.8 The black lines represent light-activated (or dark-
repressed) genes: these genes exhibit increased expression in
light with an abrupt decrease in expression at the onset of dark-
ness; they remained repressed during the entire dark period
only to be abruptly reexpressed when light returned. The red
lines represent dark-activated (or light-repressed) genes which
exhibit the opposite profile. Lights on zeitgeber time (ZT) indi-
cates 0 and 24; lights off at zeitgeber time, 12; cardiac gene
expression was assessed in 3 mice every 3 hours.

Figure 4. A, Gene expression for a candidate
biomarker Xin (or cardiomyopathy associated
protein 1 CMYA1) is similar for TAC and sham-
operated mice in the light but upregulated only
in TAC in the dark. Results are plotted using
fluorescence intensity (linear scale, raw data)
from the microarray analysis of the hearts from
36 individual mice euthanized at 4-hour inter-
vals.67 White bars denote day (ZT03, -07, -11)
and gray denotes night (ZT15, -19, -23). B, Val-
idation by RT-PCR with significantly increased
Xin expression in the dark (ZT19) vs light
(ZT07); n�3/time. *P�0.05 (Student’s t test). C,
TAC genes in which expression differs from
sham, day vs night, and intersection between
groups (see text).
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eling, revealing unforeseen potential between chromatin re-
modeling and cell physiology. The interplay between chro-
matin remodeling and circadian clockwork has been recently
well reviewed.79 Finally, and relevant to this review, histone
regulation is regarded as a crucial mechanism in cardiac gene
expression, underlying growth, renewal, and remodeling, as
has also been extensively reviewed.80 However, temporal
regulation of chromatin remodeling in normal versus disease
heart remains to be elucidated. Another area of interest and
intersect might be how environmental variables or stressors
impact on these responses of the cardiovascular system.

Potential for Biomarker Discovery
Diurnal Gene Biomarkers
Diurnal variation in gene expression and the differences
between nocturnal animals and diurnal humans must be
considered in studies dissecting the molecular events under-
lying disease or studies focused on the search for biomarkers.
For example, in the research laboratory, when assessing
murine gene expression by microarray, comparison between
normal and disease must control for the time of day when
tissues are harvested. In our TAC experiments,67 although
core circadian clock gene cycling was not altered in the TAC
mice, there was a substantial number of genes that did change
expression with pressure overload. Of the genes analyzed,
2699 transcripts (�12%) exhibited altered expression profiles
in TAC hearts. Of these 1756 (65%) exhibited differences in
gene expression between sham and TAC that were evident
only either at night or during the day (Figure 4C); thus,
sampling time would be critical to discovery of de novo
biomarkers. Two additional approaches with potential for
elucidating de novo circadian biomarkers delineating disease
are the molecular timetable microarray approach by Ueda and
colleagues,81 and the cardiac-specific clock mutant mice
developed by Young and colleagues.23

Diurnal Proteomics Biomarkers
Proteins also exhibit diurnal cycling. Specific examples have
been discussed elsewhere in this review, such as circadian
clockwork proteins, some neurohormone proteins/peptides
and/or their precursors, cytokines, and other factors. In
addition to these individual proteins that cycle, there has been
much recent attention paid toward identifying global pro-
teomic cycling patterns. The idea is that by investigating an
entire tissue proteome, de novo cycling proteins may be
identified, including new candidate biomolecules relevant to
tissue homeostasis and disease. Investigators use proteomic
technologies (eg, 2D gels, mass spectrometry) to identify
previously unrecognized cycling proteins in tissue; this is
somewhat analogous to the global genomic cycling approach
which investigated mRNA expression patterns using microar-
rays and PCR (see above). Global proteomic cycling was first
demonstrated in murine liver82 and subsequently evaluated in
additional peripheral tissues including murine blood83,84 and
retina85 and rat hypothalamus86 and pineal gland.87 Rhythmic
protein cycling is likely dependant on an intact molecular
clockwork mechanism, because abrogated protein expression
patterns in liver were observed in normal versus circadian
genetic mutant mice.82 Posttranscriptional mechanisms such

as phosphorylation likely also contribute significantly to the
proteomic cycling patterns in liver82 and possibly other
tissues. Thus, taken together, these data indicate that a
significant percentage of the proteome likely cycles in most,
or possibly all, body tissues providing additional diurnal
biomarker candidates for clinical applications, in addition to
the above noted gene based ones.

Single Nucleotide Polymorphism
A third potential approach to biomarker discovery investi-
gates single-nucleotide polymorphisms in clockwork genes,
looking for a causal relationship between the sequence
polymorphisms and human cardiovascular (or related) dis-
ease. One area of particular interest is the region encoding the
BMAL1 gene.88,89 BMAL1 sequencing identified 19 poly-
morphisms including functional variants that affected tran-
scriptional regulation in the promoter region, in hypertensive
SHR versus normotensive WKY animals.90 This is interesting
because in the rat BMAL1 maps to a region on chromosome
1 bearing quantitative trait loci for blood pressure, type 2
diabetes mellitus, body weight, cardiac mass, and kidney
mass. Moreover, in humans genome-wide scans for hyper-
tension or type 2 diabetes indicate linkage in the BMAL1
region on chromosome 11.90,91 Another study examined
polymorphisms in 19 clockwork or related genes in humans,
and results indicated that NPAS2 was linked with hyperten-
sion, and PER2 with high fasting blood glucose.92 A third
study identified single-nucleotide polymorphisms in 2 other
circadian related genes (NPSR1, PDE4D) that were associ-
ated with sleep phenotypes93; this may also be relevant as
sleep and its disturbances are associated with cardiovascular
disease as discussed below.

Cardiovascular Growth and Renewal Occurs
During Sleeping Hours

We hypothesize that many of the crucial myocardial growth
and renewal processes occur especially during the period
normally allocated to sleep (the subjective night). This
hypothesis is based on the cumulative observations from
experimental and clinical studies noted above. Furthermore, it
receives additional support from other studies as well. For
example, in 1975, Rau et al94 reported differential incorpora-
tion of labeled leucine into rat myocardial protein over 24
hours, which indicated that myocardial protein may be
synthesized at the greatest rate late in the light period (rats
asleep) with the least synthesis occurring 12 hours later (rats
active). The authors perspicaciously concluded, “These pre-
liminary studies are not conclusive but they support the
hypothesis that there is a circadian rhythm of protein metab-
olism and abundance in the heart.” Neurohormones with
anabolic activity relevant to the cardiovascular system, such
as growth hormone, atrial natriuretic peptide, aldosterone,
angiotensin II, renin, and proopiomelanocortin exhibit diurnal
variation13–16 with specific gene and/or protein expression
patterns during sleeping hours. Rat hearts isolated during the
subjective day (dark phase) and perfused ex vivo exhibit
greater cardiac power than those isolated during the subjec-
tive night95; the capacity for myocardial carbohydrate oxida-
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tion and oxygen consumption was also increased during the
subjective day.

Assessment of all the experimental molecular data de-
scribed above are consistent with our hypothesis that myo-
cardial renewal and growth is diurnal, with significant activ-
ity occurring during the subjective night when HR and BP are
at their lowest and physiological stress is at minimum. Cell
energy and resources then can be turned from coping with
external physiological demands toward cellular repair and
growth.

This hypothesis is also supported by clinical observations
(including some of those described above, in the section
Diurnal Patterns of Heart Rate and Blood Pressure As Risk
Factors for Cardiovascular Disease and in the section The
Diurnal Timing of Cardiovascular Disease). Nondipper hy-
pertensives (nocturnal hypertension) exhibit an increased risk
of target organ damage, with an increased risk of cardiovas-
cular and renal disease24,96,97 than similarly affected patients
exhibiting a nighttime pressure decrease. Moreover, although
infarcts are more common just before or in the morning after
awakening, myocardial infarcts occurring during in the mid-
dle of nighttime sleep appear to be larger.35 As noted above,
angioplasties performed at night are less successful than those
done during the day; perhaps this reflects a more deleterious
immediate vascular response to injury following the proce-
dure.98,99 Furthermore, OSA adversely affects myocardial
structure100,101; OSA results in an increase in transmural
ventricular pressure applied in a setting of sleep disturbance
and leads to autonomic neural and endocrine disruption (also
in the section Disturbed Diurnal Rhythms and the Pathogen-
esis of Cardiovascular Disease).100,101 Continuous positive
airway pressure (CPAP), even though applied only during
sleep, yields permanent long-term benefits including reverse
(beneficial) cardiac remodeling.100–104 Shift workers are sub-
jected to repeated assaults on their sleep wake cycles; shift
work triggers cardiovascular risk factors and is associated
with increased cardiovascular morbidity and mortality.105–107

Finally, conversion from conventional to nocturnal hemodi-
alysis results in significant regression of left ventricular
hypertrophy in patients with end stage renal disease.108 Thus,
clinical data also support the hypothesis that the heart is most
susceptible to remodeling, or renews, significantly during the
sleeping hours.

Disturbed Diurnal Rhythms and the
Pathogenesis of Cardiovascular Disease

Sleep Disturbances, Sleep Apnea, and
Cardiovascular Disease Progression
Sleep patterns may be integrated with circadian/diurnal
rhythms, and their disruption can play a significant role in
cardiovascular disease progression. This has become partic-
ularly evident since the turn of the twentieth century, as we
now live with daily disruptions caused by artificial light,
intercontinental air flight, and 24-hour multinational commu-
nications including the Internet and email. We are no longer
dependent on the natural day/night environment of our
ancestors, indeed our activities can extend to 24 hours a day,
7 days a week. Day/night rhythms, shift work schedules, and

regular and adequate sleep are no longer prioritized as
cornerstones of health. New central stimulants like modafinil
suggest, the future “conquest of sleep.”109 Modafinil does not
appear to have a chronobiotic effect, at least in the hamster.110

Such agents have a ready market, particularly the military, the
National Aeronautics and Space Administration, the trucking
and airline industry, and even the health professions. However,
it would still seem that increasingly the scientific and clinical
evidence indicates such an approach would not be prudent in
humans, for studies have indicated an increased prevalence of
cancer, obesity, diabetes, and adverse cardiovascular events in
shift workers, transmeridian flight crews, and patients with sleep
apnea and other sleep disturbances.105,106,111,112

OSA is a particularly relevant example in humans,100,101

because the sleep disruption adversely affects many diurnal
physiological rhythms, and this has profound cardiovascular
consequences in humans including the development and/or
exacerbation of heart failure113,114 arrhythmias and other
cardiovascular events.115 One of the fundamental issues is
that in the setting of sleep disturbance characterized by
multiple apneic awakenings, this increases transmural ven-
tricular pressure, ie, increased myocardial wall tension. Nor-
mal diurnal cycling is profoundly disturbed, with disruptions
in sympathovagal balance and neurohormonal, cytokine, and
immunocyte cycling. Nocturnal treatment with continuous
positive airway pressure has beneficial effects, reinstating
normal sleep, reversing adverse ventricular remodeling, ame-
liorating arrhythmias and hypertension, and normalizing
plasma biochemical profiles.102–104

A role for sleep disturbance in cardiovascular disease
progression is further indicated from experimental animal
studies in which specific circadian clock genes have been
disrupted. These studies also help to interrogate the underly-
ing mechanisms involved, and disease is postulated to result
from the development of significant obesity and altered
metabolic status in these animals. In 1 study, it was revealed
that clock mutant mice consumed similar amounts of food
day versus night, as compared to normal nocturnal controls
which consumed most of their food at night.116 The clock
mutant mice also exhibited altered diurnal variation in glu-
cose and triglyceride, suppression of gluconeogenesis.117

Clock mutants exhibited significant increased weight gain as
compared to controls. In another study,118 mice homozygous
for the per2 mutation exhibited a loss of diurnal rhythm
feeding, along with abnormal activity rhythms, and a lack of
corticosterone rhythm. On high-fat diets, the per2�/� mice
developed obesity, as compared to wild-type littermate con-
trols. Obesity and altered metabolic status are significant risk
factors for cardiovascular disease.

Disturbed Diurnal Rhythms Cause and Exacerbate
Heart Disease, and Implications for
Cardiovascular Remodeling at Night
Most recently, diurnal rhythm disturbance has also been
implicated as a specific etiologic cause of cardiovascular
disease. Our first studies were performed with hamsters as
these animals have a long well-defined history in rhythms
research. Ralph and colleagues discovered a naturally occur-
ring genetic mutation in hamsters, labeled tau, which altered
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the intrinsic circadian period of these animals.119 The tau
mutation is in CK1�, a “doubletime” homolog (Drosophila)
that phosphorylates PER clock mechanism proteins.120 Trans-
plantation experiments in tau mutant hamsters demonstrated
that the SCN of the hypothalamus was the “seat” of the
master circadian clock,121 an underlying mechanism driving
the daily rhythms of behavior and physiology. The tau mutant
allele reduced the free-running circadian period of the ham-
sters from �24 hours in the wild-type animals to 22 hours in
the tau/� heterozygotes. When the 22-hour heterozygotes
were entrained to a 24-hour L:D cycle, they exhibited
fragmented patterns of rest and activity and a reduced
lifespan as compared to 24-hour wild types.

We hypothesized that the discordance between the envi-
ronmental 24-hour day and the intrinsic, shortened circadian
period of the tau/� hamsters was etiologically linked to their
reduced longevity, perhaps through heart disease. Previous
studies by Penev and colleagues showed that TO-2 cardio-
myopathic hamsters (not related to tau rhythm mutant ham-
sters, but rather an inbred, naturally occurring, cardiomyo-
pathic strain) subjected to repeated disruption of their L:D
cycle died earlier than their undisrupted counterparts122; this
provided further support for this hypothesis and mirrored
cardiovascular morbidity/mortality data in shift workers. Also
mice subjected to phase advances of the L:D cycle, simulat-
ing chronic jet lag, had greater mortality as compared to
controls.123 Thus mortality was increased in animals not
allowed to adapt to the external environment.

We found124 that 22-hour tau/� heterozygote hamsters,
when entrained to a rhythm disruptive 24-hour L:D cycle,
were normal when young but developed a profound dilated
cardiomyopathy and renal pathology over the long-term
(Figure 5). They died prematurely from severe heart disease
and renal failure. Remarkably, 22-hour tau/� heterozygote
animals raised on 22-hour L:D cycles appropriate to their
genotype exhibited normal consolidated behavior, including
activity and sleep, normal cardiorenal structure and function,
and normal survival. Homozygote (20-hour) animals were
also normal when in a 24-hour environment as their very
short intrinsic circadian period dominated the external envi-
ronment, allowing consolidated behavior without the conflict
seen in the heterozygotes. The 22-hour tau/� heterozygotes
also had normal hearts under conditions where they were
raised in darkness, or with their SCN removed, again, because
no conflict arose between their intrinsic circadian system and
the external environment. Indeed, circadian disorganization
alone appeared to be a direct and sufficient cause of cardio-
vascular disease.112,124 Thus, in the case of the tau hamsters,
there was cardiac, vascular, and renal damage that developed
when there was a conflict between the endogenous tissue
clock and the diurnal signals coming from the SCN.

As noted above (in the section The Diurnal Timing of
Cardiovascular Disease), Anea et al29 recently demonstrated
the importance of normal clock genes for maintenance of
vascular health in mice. Moreover, they showed that circa-
dian mutations were etiologically implicated in the pathogen-
esis of vascular disease in mice, similar to our observations
of cardiorenal disease in tau mutant rhythm disturbed
hamsters.124

Disturbed diurnal rhythms cannot only cause heart disease,
but may also exacerbate preexisting or underlying cardiovas-
cular conditions. We demonstrated this using normal C57Bl/6
mice in a transaortic constriction (TAC) model of pressure
overload cardiac hypertrophy.67 TAC mice were exposed to
diurnal disruption by housing them in an altered 20-hour L:D
environment, as compared to the normal 24-hour diurnal
cycle. These 20-hour rhythm-disturbed TAC mice, like tau/�

heterozygote hamsters, exhibited a complete disruption of
their sleep/wake behavior, unable to consolidate either. As-
sociated with this was marked exacerbation of their cardio-
vascular disease. This included abnormal histology and in-
creased left ventricular end-systolic and end-diastolic
diameters along with reduced cardiac contractility, and in-
creased BP, as compared to “non–rhythm-disturbed” control
TAC mice. The degree of myocyte hypertrophy in myocardial
and vascular cells was significantly constrained, and accre-
tion of fibrous tissue both in myocardium and in perivascular
areas was markedly increased in response to the increased
pressure burden; that is cardiovascular remodeling was inap-
propriate to the rise in blood pressure.

Desynchrony between the external 20-hour environment
and the internal 24-hour endogenous circadian system was
further manifest even at the molecular level in the heart.67

Rhythm-disturbed 20-hour TAC mice exhibited abnormal
cycling of core circadian clock genes (eg, bmal1, per2) in the
heart as compared to non–rhythm-disturbed 24-hour TAC
controls. Furthermore, there was aberrant (decreased) expres-
sion of key cardiac hypertrophic/remodeling genes including
ANF, the RAAS pathway gene ACE, matrix remodeling
genes (eg, Col3a1, collagen), and markers of contractile
dysfunction leading to heart failure such as BNP. When the
animals were moved to a 24-hour day/night environment, that
is, the external rhythm now corresponded to the innate

Figure 5. Histopathology of hamster hearts showing myocyte
hypertrophy and myocardial fibrosis in tau/� hamsters com-
pared to wild-type hamsters (�/�) in a 24-hour environment;
histology of tau/� hamsters raised in a 22-hour environment was
indistinguishable from that of wild type. Top images, Mason’s
trichrome; bottom images, Picrosirius red. Reprinted from Mar-
tino with permission.124
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24-hour rhythm of the animal, normal compensatory cardio-
vascular remodeling processes were resumed (ie, the clock
normalized; BP fell to less hypertensive levels; myocyte
hypertrophy, previously constrained, now paradoxically in-
creased to levels appropriate to the blood pressure; gene
expression returned to normal TAC levels).

The key observation in these studies was that failure to
harmonize internal and external rhythms augmented cardio-
vascular (target) organ damage.

These data hold promise for patients, such as shift-workers,
those with sleep disorders (including the elderly), or any
individuals subject to adverse cardiovascular health effects
associated with the 24/7 demands of society. That is, by
maintaining normal diurnal body physiology, treating under-
lying sleep disorders, and/or restoring the endogenous neu-
roendocrine hormonal profiles, perhaps by imposing a fixed
or regular schedule of zeitgebers such as light/dark, rest/
activity, or the timing of meals, we may significantly benefit
cardiovascular and renal health or slow the progression of
disease.

Specific Links Between the Circadian Clock and
Cardiovascular Physiology
A variety of circadian animal models have been used in
cardiovascular rhythms research. Studies using transgenic
mice overexpressing rat per2, mice bearing a mutation in the
highly conserved binding domain of the PER2 protein, clock
mutant mice, bmal1�/� and cry1/2�/� knockouts, and npas2
mutants have been revealing (for example, see else-
where23,32,60,116,117,125–127 and others).

In one such study, Bmal 1�/� mice placed in complete
darkness exhibited a complete loss of diurnal variation in
MAP, HR, and activity.32,128 These same mice when placed in
L:D exhibited altered vascular stress responses. Also, bmal1
rhythmic patterns differed in SHRs as compared to WKY
normal controls.69 We refer the reader to these references that
further detail how the L:D cycle varies and the different
physiological effects. Congenic rat studies indicate that the
SHR mutation maps near a promoter polymorphism in bmal1
and that bmal1-mediated transcription of the regulatory factor
GATA is a mechanism possibly responsible for regulating BP
rhythms.129 Similarly bmal1 haplotypes in human cohorts
have been found and are associated with type 2 diabetes and
hypertension.90

In other studies, the per2 mutation was associated with
endothelial cell dysfunction. Per2 mutant mice exhibited
impaired endothelium-dependent relaxations to ACh in aortic
rings suspended in organ chambers, as well as increased
aortic expression of cyclooxygenase-1 and decreased NO
release, as compared to wild-type controls.30 The per2 muta-
tion was also associated with altered protein kinase Akt
signaling, cellular senescence, and impaired vascular net-
working, as compared to wild type.31

Cryptochromes appear to be especially important for
proper ANS functioning. Cryptochrome knockout mice
(cry1�/�cry2�/�) exhibited altered autonomic function even
under normal diurnal conditions, including increased heart
rate and body temperature.130,131 They also exhibited a loss of

circadian variation in blood pressure in darkness, as com-
pared to wild types.131–133

Finally, Npas2 can substitute as a clock analog or het-
erodimeric partner for Bmal1, and it plays a significant role in
maintaining circadian behaviors.134 In terms of cardiovascu-
lar physiology, Npas2 mutant mice were hypotensive, and
exhibited reduced MAP and HR especially around the L:D
transition time, and a delayed peak time (acrophase), as
compared to control littermates.32 Comparative diurnal vari-
ation of BP and HR in Npas2 versus clock mutants and
Bmal1�/� mice was investigated, as well their relative sym-
pathoadrenal function (diurnal plasma catecholamine profiles
and adrenal and cardiac gene expression relevant to catechol-
amine pathways).32

Thus, taken collectively, core elements of the circadian
clock mechanism are clearly integrated with cardiovascular
health, and the genesis and pathophysiology of cardiovascular
disease.

Much of the physiological variation that occurs in the
studies noted above is likely neurohormonal, reflecting day/
night changes in the neuroendocrine and autonomic milieu.
Glucocorticoid status, in particular, is crucial for maintenance
of cardiovascular homeostasis and disease.135 Rhythmicity is
presumably SCN orchestrated and driven down the
hypothalamic-pituitary axis by vasoactive intestinal peptide
(VIP) (see below), which helps regulate transcriptional activ-
ity of glucocorticoid receptors in heart and other organs.
CLOCK:BMAL1 heterodimers function as negative regula-
tors of glucocorticoid action.136 An elegant study by Guo and
colleagues137 helped delineate neural versus endocrine con-
trol of molecular rhythms in the heart and other organs, using
a parabiotic technique that joined intact mice to SCN-
lesioned mice. Nonneural signals were sufficient to maintain
circadian clock gene expression in liver and kidney, but
inadequate for clocks in heart and muscle. These data
demonstrated that SCN pathways, which influence tissue
circadian rhythms, differ between organs.

Some physiological variation may be specifically second-
ary to intrinsic clock rhythms within the cardiomyocyte. Bray
and colleagues used mice overexpressing a dominant clock
mutation directly within the cardiomyocyte.23 They showed
that the intrinsic myocardial clock contributes to selection of
glucose versus fatty acid substrate by the cardiomyocyte and
plays a role in the regulation of heart rate and cardiac
contractile function including the response of the heart to an
increase in workload.

The myocyte sarcomere classically considered only as the
motor of contractility has been recently shown also to be
integral to myocyte signaling. The protein of the clock gene
resides within the myofilament Z-disc colocalizing with
�-actinin138,139 in the myocyte; the subcellular distribution of
CLOCK protein can be directly altered by myocyte contrac-
tility.138,139 Positive inotropic conditions appear to stimulate
the nuclear translocation of CLOCK; CLOCK has histone
acetyltransferase activity; thus, it is implicated in chromatin
remodeling.78 CLOCK in the nucleus also activates the
transcription of genes that regulate myocyte metabolism
and increase energy supply, coupling it to the increase in
contractility.138,139
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There are many hundreds of genes or their protein products
that may be under the direct regulation of the local molecular
clockwork. Glycogen synthase kinase (GSK)3� is a recently
discovered integral component of the mammalian circadian
clock that promotes nuclear translocation of PER2, affects
REV-ERB transcriptional activity, and thus can advance or
delay the clock phase.140–142 GSK3� may also be of particular
relevance to heart disease in vivo because in addition to its
role in the clockwork mechanism, it also negatively regulates
cardiac hypertrophy via phosphorylation on its serine9 resi-
due. GSK3� can antagonize the cardiac hypertrophic re-
sponse to stimuli such as pressure overload or catecholamine
stimulation.143 However, interactions between clock disrup-
tion, GSK3� expression patterns, and progression of cardiac
remodeling are not yet fully elucidated.

Although direct links between the circadian clock and
cardiovascular growth, renewal, and remodeling are not yet
fully defined, several additional promising areas of investi-
gation have opened recently.

Arginine vasopressin (AVP) is very important for cardio-
vascular function.144 Notably, AVP mRNA rhythms in the
SCN are abolished in clock mutant mice, concurrent with
markedly reduced AVP peptide levels.145

Another link may be through albumin site D-binding
protein (DBP), an output gene/protein of the circadian mo-
lecular clockwork mechanism.146 DBP mRNA rhythms were
abolished in all tissues in clock mutant mice.146,147 Also
promising is dec1, a core circadian molecular clock compo-
nent.148,149 Dec1 exhibits robust mRNA rhythms in normal
mice, and rhythms were disturbed in SCN and heart tissues
but not liver in clock mutant mice.150,151 These would seem to
be promising new candidates for further study, specifically on
the topic of clock related maintenance of heart and vessel
homeostasis and in remodeling in cardiovascular disease.

Finally, VIP can exert profound direct effects on the
cardiovascular system,152 and cardiac responses to VIP and/or
its receptors (VPAC) are altered in animal models of hyper-
tension.153 VIP displays diurnal rhythms in blood plas-
ma.154,155 It is thought to be crucial to SCN functioning as
many SCN neurons projecting to the paraventricular nucleus
appear to use VIP for signaling.156 VIP/VPAC animal models
used in rhythms research may offer unique new insights into
cardiovascular phenotype.

Understanding crosstalk between circadian proteins and
myocyte signaling pathways will undoubtedly result in im-
portant insights into the pathophysiology of cardiovascular
disease and the role of the environment. The circadian system
appears to be a profoundly important homeostatic mechanism
in cardiovascular health, and circadian dysregulation causes
or exacerbates cardiac, vascular, and renal disease. No doubt
this applies to other tissues and systems as well.

Summary and Conclusions for
Translational Medicine

Principles Relevant to Cardiovascular Physiology
This review focuses on 2 important principles relevant to
cardiovascular physiology. First, significant aspects of car-
diovascular physiology are dynamic, including metabolism,

growth, and remodeling. That is, they do not occur uniformly
over the 24-hour diurnal cycle. Diurnal variation is evident at
the molecular level, because gene expression in the heart and
blood vessels is clearly different in the day as compared to the
night. Much of the evidence presented here indicates that
growth and renewal (structural remodeling) are highly depen-
dent on processes that occur during the subjective night.

Second, synchrony between our endogenous (internal,
intrinsic) circadian rhythms and the exogenous (external,
extrinsic) diurnal environment is a fundamentally important
aspect of healthy organ growth and renewal. As a corollary,
disturbing or disrupting this integral relationship has devas-
tating effects on cardiovascular, renal, and possibly other
organ systems.

Taken together, these studies indicate that the day/night
schedule is applicable to a broad and important range of
clinical issues, far more than just impaired cognitive function
or performance caused by fatigue, the foci of contemporary
thought.

Bench to Bedside Applications
These principles highlight several important bench-to-
bedside applications. Diurnal molecular variation holds con-
siderable promise for novel discovery of physiologically
important biomarkers for aiding in understanding, diagnos-
ing, and/or treating human disease. However, in translating
research from bench to bedside, the differences between
nocturnal animals and diurnal humans must be considered.

The risk/benefit ratio of some therapeutic strategies is not
the same across the 24-hour diurnal cycle. For example, one
practical target is ACE; this enzyme is involved in tissue
remodeling and blood pressure control and is upregulated in
our TAC hypertrophy model.67 ACE inhibitors (ACEis) are
the first line agents in the clinical management of hyperten-
sion, heart failure and after myocardial infarction in humans.
Captopril is a short-acting ACEi, and our pilot experiments
revealed that it is ideal for chronopharmacologic investiga-
tion, comparing efficacy in cardiac reverse remodeling if
administered in the day versus night.157 A chronotherapeutic
approach enhancing efficacy of ACEi has also been reported
in the 1-clip renal hypertensive rat158 and when comparing
brief versus continuous infusion of angiotensin to rats.159

Other established blood pressure medications also exhibit
chronotherapeutic promise, including the calcium channel
blockers verapamil and diltiazem and the �-blocker propran-
olol.160–162 The ACEis enalapril, quinapril, and ramipril may
also beneficially impact on nocturnal blood pressure pro-
files.161 Clinical applications of chronotherapy promise to
improve treatment of a wide range of health concerns in
addition to hypertension, as has been well reviewed.163–171

Disregard for diurnal rhythms may contribute to differ-
ences in therapeutic efficacy, which may be observed, be-
tween nocturnal animal models and human patients. Clinical
trials should routinely take into account the differing safety
and efficacy profiles over 24-hour daily cycles. An avoidable
bench to bedside variable is added when a drug is tested in
rodents during the laboratory day (nocturnal rodent sleep-
time), for administration to humans during human wake-time.
Chronotherapeutics offers an approach, which may enhance
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drug efficacy, reduce side effects, attain better patient com-
pliance and perhaps reduce costs even for long established
drugs.

These studies also show that sleep disruption or an inap-
propriately synchronized wake/sleep schedule may be an
important environmental determinant affecting the expression
of a disease phenotype. Above we showed an interaction
between environment and the casein kinase 1� (tau) gene124

resulted in heart disease. Also, our TAC studies67 suggested
chronic disruption of diurnal rhythm in the setting of hyper-
tension could exacerbate both hypertension and target organ
damage. The clinical observations that an abnormal sleep
profile is a recognized cause of resistant hypertension, heart
attack, heart failure, and stroke are consistent with this
hypothesis. One would also anticipate that chronic diurnal
rhythm disruption might exacerbate the phenotype of familial
hypertrophic or dilated cardiomyopathy or perhaps impair
quality of tissue repair following myocardial infarction.

Intensive and cardiac care units often use multibedded
rooms, subjecting critically ill patients to preventable light
and sleep disturbances, when the patient in the neighboring
bed needs medical attention.172,173 Save for possible inquiry
regarding OSA, clinicians and society largely disregard
regular day:night schedules or sleep profile as a risk factor for
disease; it rarely forms part of the functional inquiry of a
typical physician and is not usually in surveys of healthy
lifestyle choices.174,175 Drugs that promise to reduce the need
for sleep may reap “the law of unintended consequences.”

Day:night rhythms, including sleep, have been viewed
mainly from a neuroscience perspective; an article in Nature
as recently as 2005176 was entitled “Sleep Is of the Brain, by
the Brain and for the Brain.” Sleep may be “of” the brain, but
biological rhythms are found in all organs (“by” all organs),
and the above studies show that the integrity of biological
rhythms, including sleep, are likely “for” all organs, certainly
for the health and integrity of the cardiovascular and renal
systems.

In conclusion, synchrony between external and internal
diurnal rhythms and harmony among the molecular rhythms
within the cell is essential for normal organ biology. The
substrate and enzymatic components of a given metabolic
pathway must be present not only in the right compartmental
space within the cell but also at the right time. Cell physiol-
ogy is 4 dimensional. Harmony between our biology and our
environment is a key to good health.
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