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SUMMARY

We present a method for automatically discovering
signaling pathways from time-resolved phosphopro-
teomic data. The Temporal Pathway Synthesizer
(TPS) algorithm uses constraint-solving techniques
first developed in the context of formal verification
to explore paths in an interaction network. It system-
atically eliminates all candidate structures for a
signaling pathway where a protein is activated or
inactivated before its upstream regulators. The algo-
rithm can model more than one hundred thousand
dynamic phosphosites and can discover pathway
members that are not differentially phosphorylated.
By analyzing temporal data, TPS defines signaling
cascades without needing to experimentally perturb
individual proteins. It recovers known pathways and
proposes pathway connections when applied to the
human epidermal growth factor and yeast osmotic
stress responses. Independent kinase mutant
studies validate predicted substrates in the TPS os-
motic stress pathway.

INTRODUCTION

High-throughput proteomic assays illuminate the amazing

breadth and complexity of the signal transduction pathways

that cells employ to respond to extracellular cues. These tech-

nologies can quantify protein abundance or post-translational

modifications (PTMs). Mass spectrometry, in particular, offers

a broad view of PTMs, including phosphorylation, ubiquitination,

acetylation, and methylation (Choudhary and Mann, 2010), and

is not restricted to a predefined list of proteins. Here, we show
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This is an open access article und
how to discover new facets of signaling cascades from complex

proteomic data by integrating observed PTMs with existing

knowledge of protein interactions.

Many gaps persist in our understanding of phosphorylation

signaling cascades. For example, our mass spectrometry exper-

iments show that nearly all proteins that are significantly (de)

phosphorylated when the epidermal growth factor receptor

(EGFR) is stimulated are absent from EGFR pathway maps.

The low overlap is consistent with previous temporal phospho-

proteomic studies of mammalian signaling (Cao et al., 2012;

D’Souza et al., 2014; Humphrey et al., 2015). Discordance be-

tween mass spectrometry studies and pathway databases can

be caused by extensive crosstalk among pathways (Bauer-Meh-

ren et al., 2009), context-specific interactions (Hill et al., 2017),

cell- and tissue-specific protein abundance (Kim et al., 2014),

and signaling pathway rewiring (Pawson and Warner, 2007).

Network inference algorithms can explain the phosphorylation

events that lie outside of canonical pathways and complement

curated pathway maps. Specialized algorithms model time se-

ries data, which inform the ordering of phosphorylation changes

and support causal instead of correlative modeling (Bar-Joseph

et al., 2012). Temporal protein signaling information can be used

to reconstruct more accurate and complete networks than a sin-

gle static snapshot of the phosphoproteome.

A complementary challenge to interpreting off-pathway phos-

phorylation is that the cellular stimulus response includes mech-

anisms that are not captured in phosphoproteomic datasets.

There is an interplay between phosphorylation changes and

other integral parts of signaling cascades. Phosphorylation can

affect protein stability, subcellular localization, and recognition

of interaction partners (Newman et al., 2014). Phosphoproteomic

studies measure only one type of PTM, and not all phosphory-

lated proteins are detected by mass spectrometry. Additional

information is required to infer comprehensive signaling cas-

cades that include non-differentially phosphorylated proteins.
rts 24, 3607–3618, September 25, 2018 ª 2018 The Authors. 3607
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Figure 1. TPS Workflow

First, the PPI graph is combined with the phos-

phorylation data to obtain a condition-specific

network (step 1.1). This step does not model the

temporal information and instead uses the phos-

phorylation peak, the highest magnitude fold

change. Separately, the time series data are

converted into discrete timed signaling events

(step 1.2). TPS then defines a space of models

that agree with the data by transforming the

timed events, undirected network topology, and

prior knowledge (kinase-substrate interaction di-

rections in this study) into a set of constraints (step

2). It summarizes the solution space by computing

the union of all signed, directed graph models that

satisfy the given constraints (step 3). The final

pathway model predicts how a subset of generic

physical protein interactions coordinates to

respond to a specific stimulus in a particular

cellular context.
Protein-protein interaction (PPI) networks serve this purpose by

identifying interactions that connect observed phosphorylation

events.

We present the Temporal Pathway Synthesizer (TPS) (Fig-

ure 1), a method to assemble temporal phosphoproteomic
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data into signaling pathways that extend

beyond existing canonical maps. ‘‘Syn-

thesizer’’ refers to applying computa-

tional program synthesis techniques

(Manna and Waldinger, 1980) to produce

pathway models from experimental data

(Fisher et al., 2014), not synthetic biology

(Benner and Sismour, 2005). TPS over-

comes both of the aforementioned chal-

lenges in interpreting phosphoproteomic

data: modeling signaling events that are

not captured by pathway databases and

including non-phosphorylated proteins

in the predicted pathway structures.

TPS first transforms a PPI graph into

a condition-specific network by using

mass spectrometry data to filter out irrele-

vant interactions. Next, TPS finds the

orientation and sign of edges in the condi-

tion-specific interaction graph based on

the order of the phosphorylation events.

Phosphorylation timing is modeled sepa-

rately for each observed phosphorylation

site on a protein. TPS systematically ex-

plores all signed, directed graphs that

may explain how signaling messages

propagate from the stimulated source

protein. Finally, TPS summarizes the valid

graphs into a single aggregate network

that explicitly tracks confident andambig-

uous predictions. Our temporal pathway

visualizer tool interactively visualizes the
summary network alongside the temporal phosphoproteomic

data (Köksal et al., 2018).

We study the dynamic signaling responses to human EGF

stimulation and yeast osmotic stress. TPS recovers networks

that explain how stimulus-responsive proteins are activated or
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Figure 2. Overview of the EGF Response Proteomics Analysis

(A) Cells are stimulated with EGF for 0, 2, 4, 8, 16, 32, 64, or 128 min and then lysed. Cellular protein content is denatured and digested. Peptides are labeled with

iTRAQ and mixed. Tyrosine phosphorylated peptides are enriched by immunoprecipitation, and the flowthrough is passed over immobilized metal affinity

chromatography to enrich for phosphorylation events on serine and threonine. The phosphotyrosine-rich fraction is analyzed by 1D-LC-MS/MS. The more

complex phospho-serine/threonine-rich fraction is analyzed by 2D-LC-MS/MS. Resulting spectra are identified and quantified using Comet.

(B) The 263 peptides with significant temporal changes in phosphorylation exhibit distinct types of temporal behaviors (log2 fold change with respect to pre-

stimulation intensity). One group of peptides is activated immediately upon stimulation, whereas others display delayed waves of phosphorylation as signals

propagate.

See also Figures S1 and S2 and Data S1 and S2.
inhibited via chains of physical interactions stemming from the

upstream receptors. The highest-confidence TPS predictions

are well supported by prior knowledge and consistent with

kinase perturbations. These insights into well characterized

human and yeast pathways exemplify how TPS can produce

condition-specific pathway maps.

RESULTS

Quantitative Time Series Phosphoproteomics of EGF
Response Captures Widespread Signaling Activity
To quantify global EGFR-mediated cellular signaling changes in

HEK293 EGFR Flp-In (EGFR Flp-In) cells (Gordus et al., 2009)

with phosphoproteomics, we used in-line two-dimensional

high-performance liquid chromatography separation (2D-

HPLC) coupled to tandem mass spectrometry (MS/MS) (Ficarro

et al., 2011; Wolf-Yadlin et al., 2006). We stimulated the cells

with EGF for 0, 2, 4, 8, 16, 32, 64, or 128 min and collected three

biological replicates with two technical replicates each (Fig-

ure 2). We identified 1,068 phosphorylation sites that were de-

tected in all biological replicates (5,442 unique sites detected

in at least one replicate), which were then used for TPS network

modeling (Data S1 and S2). Phosphorylation intensities were
well correlated across the three biological replicates (Köksal

et al., 2018).

Reference Pathway Databases Fail to Explain
Phosphorylation Changes
We assessed how much of the observed phosphorylation could

be explained by existing pathway databases. To obtain a

comprehensive view of EGFR-mediated signaling, we collected

eight EGFR-related reference pathways (Croft et al., 2014;

Gough, 2002; Kandasamy et al., 2010; Kanehisa et al., 2012;

Layek et al., 2011; Nishimura, 2001; Schaefer et al., 2009; Sup-

plemental Experimental Procedures). Despite the diversity of

the pathway diagrams, they all fail to capture the vast majority

of significant phosphorylation events triggered by EGF simula-

tion in our system (Figures S1 and S2). Among the 203 signifi-

cantly differentially phosphorylated proteins, typically 5% or

fewer are present in a reference pathway. 85% of phosphory-

lated proteins are missing from all of the EGFR-related pathway

maps (Figure S1B). Additionally, most of the proteins in the EGFR

pathwaymaps are not differentially phosphorylated (Figure S1A),

reflecting a combination of relevant proteins that do not undergo

this particular type of PTM, phosphorylation events missed by

the mass spectrometry, and interactions that are relevant in
Cell Reports 24, 3607–3618, September 25, 2018 3609



some contexts, but not in EGFR Flp-In cells. The low overlaps

agree with phosphoproteomic studies of other mammalian

signaling pathways. Less than 10% of insulin-regulated proteins

were members of a curated insulin pathway (Humphrey et al.,

2015). In a study of T cell receptor signaling, only 21% of phos-

phorylated proteins were known to be involved in the pathway

(Cao et al., 2012). Phosphosites regulated by transforming

growth factor b (TGF-b) stimulation were not enriched for the

TGF-b pathway (D’Souza et al., 2014).

Crosstalk does not explain the low coverage. Most phosphor-

ylated proteins (63%) are not present in the EGFR pathways or

any BioCarta, Reactome, or PID pathway (Figure S1B), demon-

strating the need for a context-specific representation of EGFR

signaling pathway.

Reconstructing the EGFR Pathway with TPS Explains
Temporal Phosphorylation Changes
We applied TPS to model the dynamic signaling response to

EGFR stimulation in EGFR Flp-In HEK293 cells. Our workflow

consists of three major steps: (1) preprocessing the protein-

protein interaction network and temporal phosphorylation data;

(2) transforming temporal information, subnetwork structure,

and prior knowledge into logical constraints; and (3) summari-

zing all valid signaling pathway models to discover interactions

with unambiguous directions and/or signs (Figure 1).

We first discretized the time series phosphoproteomic data,

using Tukey’s honest significant difference (HSD) test (Yandell,

1997) to determine whether a peptide exhibits a significant in-

crease, significant decrease, or no change in phosphorylation

at each post-stimulation time point. 263 peptides, correspond-

ing to 203 proteins, significantly change at one or more time

points (Köksal et al., 2018). Second, we used the prize-collecting

Steiner forest (PCSF) (Tuncbag et al., 2013) network algorithm to

link the phosphorylated proteins to EGF, the source of stimula-

tion, weighting proteins based on their HSD test significance.

PCSF identifies a PPI subnetwork of 316 nodes and 422 edges

(Data S3). This subnetwork comprises the interactions through

which signaling messages are most likely to propagate. Third,

TPS combined the discretized temporal activities of the 263

significantly changing peptides, the PCSF network, and prior

knowledge (the orientation of kinase-substrate interactions) to

generate a summary of all feasible pathway models (Data S3).

Each type of input was translated into logical constraints, which

were used to rule out pathway models that are not supported by

the data.

In contrast to the reference EGFR pathway diagrams, which

capture at most 11% of the differentially phosphorylated

proteins, the predicted network from TPS (Figures 3 and S3;

Data S3) contains 83% of the responding proteins in its 311

nodes. Each of these proteins is linked to the EGF stimulation

with high-confidence protein interactions and has timing that

is consistent with the temporal phosphorylation changes of

all other proteins in the pathway. These interactions are depicted

as directed, signed edges in a graph, where the sign reflects that

the proteins have the same (activation) or opposite (inhibition)

activity changes. Of the 413 edges in the network, 202 (49%)

have a consistent direction in all of the valid pathway models, a

strong assertion about the confidence in these edge directions.
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Thirty-eight of the directed edges have a consistent sign as

well. The PPI connections, phosphorylation timing, and prior

knowledge of kinase-substrate interaction direction all play

distinct, important roles in reducing the number of valid pathway

models (Köksal et al., 2018). The timing of protein activation and

inactivation in the TPS pathway reveals a rapid spread of

signaling post-stimulation (Köksal et al., 2018).

Prior Evidence Supports EGFR Pathway Predictions
Although nearly all differentially phosphorylated proteins lie

outside traditional EGFR pathway representations, 29 (11%) of

the 273 phosphorylated proteins and 5 (13%) of the 38 unphos-

phorylated connective proteins in the TPS network are recog-

nized as EGFR pathway members (Köksal et al., 2018). We find

strong evidence for many of the predicted directions as well

(Köksal et al., 2018). In total, 82 of 202 interaction directions

are supported by our semi-automated evaluations using EGFR

reference pathways, the PhosphoSitePlus input data (Hornbeck

et al., 2015), and natural language processing software (Chen

and Sharp, 2004; Hoffmann and Valencia, 2004; Poon et al.,

2014; Data S3 and S4; Supplemental Experimental Procedures).

The vast majority of the remaining directions can neither be

confirmed nor refuted (Data S3). Our additional analyses (Köksal

et al., 2018; Data S3) show that TPS also recovers high-quality

pathway models when applied to existing EGF response data-

sets with lower temporal resolution (Olsen et al., 2006).

TPS Network Models Can Guide Follow-Up Experiments
The TPS network can be used to prioritize proteins and interac-

tions for additional experimental testing. To illustrate this pro-

cess, we focused on edges for which the direction or sign

were predicted confidently and one of the two proteins is amem-

ber of an EGFR reference pathway (Köksal et al., 2018). For each

interaction, we inhibited the predicted upstream protein and

measured the effect on the predicted target’s phosphorylation

usingwestern blotting. From our list of ten candidate interactions

(Table S1), we selected the three edges for which the antibodies

reliably produced clean and quantifiable bands at the right mo-

lecular weight: MAPK1-ATP1A1; ABL2 / CRK; and AKT1 /

ZYX (zyxin) (Figures 3C and S4). These proteins are already

known to physically interact. The novelty of the TPS predictions

is the interactions’ relevance to the EGF response. The inhibitors

used to inhibit the upstream proteins were SCH772984 for

MAPK1, dasatinib for ABL2, and MK-2206 for AKT1. After serum

starvation, the cells were treated with an inhibitor for one hour

and then stimulated with EGF. We collected data at two time

points (denoted short and long; see Figure S4) based on the

timing of the phosphorylation events in our mass spectrometry

data. Lysates were then assayed by western blot to quantify

the level of phosphorylation of the downstream protein.

Dasatinib decreased phosphorylation of CRK (isoform Crk-II)

pY221, consistent with the TPS pathway edge (Figure S4). Inhib-

iting AKT1 increased phosphorylation of Zyxin. In both cases, the

predicted interaction direction is supported. MAPK1 inhibition

increased ATP1A1 pY10 phosphorylation. The TPS model pre-

dicted an inhibitory interaction between these proteins, but the

direction was ambiguous. Our data agree with the predicted

edge sign and suggest that MAPK1 is upstream of ATP1A1
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Figure 3. TPS EGF Response Pathway Model

Zoomed regions of the full TPS pathway model visualized with Cytoscape (Shannon et al., 2003).

(A) The EGFR subnetwork (EGFR, GRB2, CBL, and all their direct neighbors) depicts the proteins that first react to EGF stimulation. A substantial portion (18 of 38

proteins) is known to be associated with EGFR signaling. Green and red edges depict activation and inhibition, respectively. Gray edges that terminate in a circle

indicate that the interaction is used in the same direction in all possible pathway models, but the sign is ambiguous. Thin, undirected edges are used in different

directions in different valid pathway models. Thick, rounded borders show which proteins are present in one or more reference EGFR pathways. Node anno-

tations are detailed in (B).

(B) Line graphs on each protein node show the temporal peptide phosphorylation changes relative to the pre-stimulation level on a log2 scale. Multiple lines

indicate multiple observed phosphopeptides for that protein, where black lines denote statistically significant phosphorylation changes and gray lines indicate

insignificant changes. Proteins without line graphs are connective Steiner nodes inferred by PCSF. Colored boxes summarize the TPS inferred activity state

across peptides at each time point. Red indicates activation, blue inhibition, gray ambiguity, and white inactivity.

(C) The subnetwork surrounding MAPK1 andMAPK3. TPS correctly determines that MAP2K1 is the kinase that controls both MAPK1 andMAPK3, even though it

is not observed in the mass spectrometry data.

See also Figures S3 and S4, Table S1, and Data S3 and S4.
(Köksal et al., 2018). Truly validating the predicted edges would

require more direct manipulation of the relevant kinases because

Dasatinib is a multi-target inhibitor (Lindauer and Hochhaus,

2014); SCH772984 inhibits both MAPK1 and MAPK3 (Morris

et al., 2013); and MK-2206 inhibits AKT1, AKT2, and AKT3

(Yan, 2009). However, these inhibitor experiments demonstrate

how TPS can generate testable predictions from global phos-

phoproteomic data.

TPS Makes Network Predictions Not Captured by
Alternative Approaches
We compared TPS to two existing methods that combine PPI

networks and time series data and a third that uses only the
phosphorylation data (Supplemental Experimental Procedures).

The dynamic Bayesian network (DBN) (Hill et al., 2012) infers

posterior peptide-peptide interaction probabilities from time se-

ries data and network priors. TimeXNet (Patil et al., 2013) formu-

lates pathway prediction as a network flow problem. FunChisq

(Zhang and Song, 2013) uses an adapted chi-square test to

detect directed relationships between phosphorylated proteins.

Comparing the four predicted EGF response pathway models

demonstrates the impact of the diverse algorithmic strategies.

Almost all of the protein-protein edges are unique to a single

method, and no edges are predicted by all four methods (Köksal

et al., 2018). Despite greater overlap among the predicted no-

des, the four pathways are divergent.
Cell Reports 24, 3607–3618, September 25, 2018 3611



Figure 4. TPS Osmotic Stress Response

Pathway Model

(A) The portion of the TPS yeast osmotic stress

response pathway model for which both proteins

are in the osmotic stress reference pathway. TPS

correctly recovers the core pathway structure from

the Sho1 osmosensor to the primary kinases and

transcription factors by ordering proteins based on

the phosphorylation timing. Twelve of these

pathway interactions are supported by the KEGG

high-osmolarity pathway or other literature (Data

S4). Node and edge visualizations are as in Fig-

ure 3. Note that three interactions (Ste50/ Pbs2,

Ste50 / Ssk2, and Rck2 / Pbs2), derived from

references (Chasman et al., 2014; Sharifpoor et al.,

2011), are not found in other curated versions of

the yeast interaction network.

(B) A zoomed view of the TPS pathway depicting

Rck2 and the proteins it is predicted to interact

with. All four proteins predicted to be activated by

Rck2—Fpk1, Pik1, Rod1, and YLR257W—dis-

played decreased phosphorylation in the RCK2

mutant strain (Romanov et al., 2017), as did pre-

dicted targets Mlf3, Sla1, and YHR131C.

See also Figure S5 and Data S3 and S4.
Becausemost of the differentially phosphorylated proteins are

not members of any reference pathway, these pathways cannot

be used to assess the overall quality of the predictions. The

TimeXNet pathway, the largest of the three predicted networks,

generally captures the most reference pathway interactions

when ignoring edge direction and sign (Data S4). However, a

closer examination that accounts for the predicted interaction di-

rection shows that TPS typically makes the fewest errors, even

when controlling for the size of the predicted pathways (Data S4).

Yeast Osmotic Stress Response Model Recapitulates
Known Pathway Structure and Nominates Candidate
Rck2 and Cdc28 Substrates
Although they are still not fully characterized, stress-response

signaling cascades in the yeast Saccharomyces cerevisiae are

better understood than their human counterparts and are not

subject to cell-type-specific effects. Thus, we applied TPS to

model the yeast osmotic stress response to assess its ability

to recapitulate this frequently studied pathway and reveal addi-

tional interactions. The hyperosmotic stress response is primar-

ily controlled by the high osmolarity glycerol (HOG) pathway.

Kanshin et al. (2015) profiled the rapid response to NaCl, an os-

motic stressor, measuring phosphorylation changes for 60 s

post-stimulation at uniform 5-s intervals. They identified 1,596

phosphorylated proteins, including 1,401 dynamic phosphopep-

tides on 784 proteins based on their fold changes in the salt

stress time series with respect to a control (Table S2). We used
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these data to construct a TPS pathway

model of the early osmotic stress

response (Data S3).

The TPS osmotic stress pathway con-

tains 216 proteins and 287 interactions

(Figure S5). Thirty-six of these proteins
(17%) have been previously annotated as osmotic stress

pathway proteins (Kawakami et al., 2016). Focusing on the sub-

set of interactions that connect known HOG pathway members

reveals that many of the edges connecting them are correct as

well (Figure 4A). TPS recovers the core part of the Kyoto Ency-

clopedia of Genes and Genomes (KEGG) high-osmolarity

pathway, including the interactions Sho1 / Ste50, Sho1 /

Cdc24, Sho1 / Pbs2, Ssk2 / Pbs2, and Pbs2 / Hog1

(Data S4). In addition, it correctly places Hog1 as the direct regu-

lator of Rck2 (Romanov et al., 2017) and the transcription factors

Hot1, Msn2, and Sko1 (Capaldi et al., 2008). TPS identifies Sch9

as an additional regulator of Sko1 (Pascual-Ahuir and Proft,

2007). Following hyperosmotic shock, Hog1 is recruited to

Fps1 (Lee et al., 2013), consistent with the TPS prediction. The

predicted feedback from Hog1 to Ste50 is also well supported

in osmotic stress (Hao et al., 2008). Many predicted interactions

that deviate from the canonical HOG pathway model can be

attributed to the input phosphorylation data and background

network, not the TPS algorithm (Köksal et al., 2018).

After confirming the TPS osmotic stress model agrees well

with existing models, we investigated novel candidate pathway

members. The TPS model captured the cascade Hog1 /

Rck2 / Eft2 (Romanov et al., 2017; Teige et al., 2001) and pre-

dicted additional Rck2 targets (Figure 4B). To test these predic-

tions, we compared them to a recent phosphoproteomic study

of an RCK2 mutant subjected to osmotic stress (Romanov

et al., 2017). All four proteins that TPS predicts are activated



Figure 5. Artificial Example Illustrating the Inputs to TPS

(A) The hypothetical signaling pathway that responds to stimulation of node A.

The colored boxes on each node show the time at which the protein is acti-

vated or inhibited and begins influencing its downstream neighbors, with the

leftmost position indicating the earliest time point. Red boxes are increases in

activity, blue boxes are decreases, andwhite boxes are inactive time points, as

in Figure 3B. The left position indicates the activity at 0 to 1 min, the center

position at 1 to 2 min, and the right position at 2 to 5 min.

(B) The first input to TPS is time series phosphorylation data of the response to

stimulating node A.

(C) The second input is an undirected graph of high-confidence interactions

that can recover hidden components that do not appear in the temporal data,

such as node B.

(D) The last input, which is optional, is prior knowledge of the pathway in-

teractions expressed as (unsigned) directed edges. We represent unsigned

edges with a circular arrowhead.
by Rck2 have defective phosphorylation on at least one phos-

phosite in rck2D five minutes after osmotic insult (Romanov

et al., 2017). Thus, Rck2 likely directly phosphorylates Fpk1,

Pik1, Rod1, and YLR257W upon osmotic stress, as TPS pre-

dicts. In addition to the four activated substrates, TPS predicts

that Rck2 directly regulates seven additional proteins with an

ambiguous sign. Three of these seven predicted targets—Mlf3,

Sla1, and YHR131C—have a phosphosite that is dependent on

Rck2 during osmotic stress (Romanov et al., 2017), supporting

the TPS predictions. The three protein-protein edge signs are

ambiguous because some phosphosites on the proteins exhibit

a significant increase in phosphorylation and others decrease.

Similarly, we verified that 67 out of 91 (74%) predictedCdc28 tar-

gets have at least one phosphosite with defective phosphoryla-

tion following Cdc28 inhibition (Holt et al., 2009; Kanshin et al.,

2017; Köksal et al., 2018).

The high-quality TPS osmotic stress pathway demonstrates

the algorithm is broadly useful beyond our own EGF stimulation

study. It not only recovers many major elements of the classic
HOG pathway representation but also prioritizes condition-spe-

cific kinase targets that are supported by independent

perturbations.

DISCUSSION

The pathway structure illuminated by the phosphorylated pro-

teins in our EGFR Flp-In cells differs considerably from the sim-

ple representations in pathway databases. Interpreting signaling

data requires reconstructing models specific to the cells, stimuli,

and environment being studied. TPS combines condition-spe-

cific information—time series phosphoproteomic data and the

source of stimulation—with generic PPI networks and optional

prior knowledge (Figure 5) to produce custom pathway repre-

sentations. The predicted EGFR signaling network highlights

alternative connections to classic EGFR pathway kinases and

extends the pathway with interactions that are supported by

prior knowledge in other contexts or kinase inhibition.

Combining different constraints on pathway structure from PPI

network topology and temporal information is computationally

challenging, and we identify predictions that can be obtained

only through joint reasoning with all available data (Figure 6).

Contrasting TPS with Related Computational
Approaches
TPS integrates information from PPI networks, phosphosite-

specific time series phosphoproteomic data, and prior knowl-

edge by introducing a powerful constraint-based approach.

Existing classes of signaling pathway inference algorithms

do not offer the same functionality as TPS. Methods that identify

dependencies in phosphorylation levels (Hill et al., 2012; Zhang

and Song, 2013) omit pathway members without observed

phosphorylation changes. TPS does not require perturbations

to reconstruct pathways (Ciaccio et al., 2015; Molinelli

et al., 2013; Terfve et al., 2015). Participants in the HPN-DREAM

network inference challenge (Hill et al., 2016) inferred signaling

networks from time series data for tens of phosphopro-

teins, but the top methods either did not scale to our dataset

(PropheticGranger; Carlin et al., 2017) or did not perform well

(FunChisq; Zhang and Song, 2013). Other algorithms that inte-

grate temporal information with PPI networks (Budak et al.,

2015; Gitter and Bar-Joseph, 2013; Jain et al., 2016; Norman

and Cicek, 2018; Patil et al., 2013) do not evaluate and summa-

rize all pathway models that are supported by the network and

phosphorylation timing constraints. This summarization strategy

is what enables TPS to scale to solution spaces (Figure S6) that

are substantially larger than those typically considered by

declarative computational approaches (Chasman et al., 2014;

Dunn et al., 2014; Guziolowski et al., 2013; Köksal et al., 2013;

Moignard et al., 2015; Sharan and Karp, 2013). The Supple-

mental Experimental Procedures contain additional related soft-

ware beyond these representative examples.

Future Directions in Pathway Synthesis
TPS offers a powerful framework for combining multiple types of

declarative constraints to generate condition-specific signaling

pathways. The constraint-based approach could be extended

to include additional types of data, such as perturbation data
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Figure 6. TPS Models for Individual versus

Combined Data Sources

Summary graphs obtained by aggregating (via

graph union) all possible signed, directed tree

models for different constraints obtained from

time series data (A), graph topology (B), prior

knowledge (in this example, kinase-substrate

interaction directions) (C), and all three types

of input at the same time (D). If an edge has a

unique sign and direction in a summary graph

(colored green and red for activations and in-

hibitions, respectively), this means there are no

valid models that assign a different orientation or

sign to that edge. Edges that can have any

combination of sign and direction in different

models are gray without an arrowhead. See also

Figure S7.
that link kinase inhibition or deletion to phosphorylation changes.

Both temporal (Kanshin et al., 2015) and kinase perturbation

(MacGilvray et al., 2018; Romanov et al., 2017) phosphoproteo-

mic data are available for the yeast osmotic stress response.

Modeling multiple related conditions (e.g., different ligand stimuli

and inhibitor perturbations) could allow TPS to learn not only the

signs of interactions but also the logic employed when multiple

incoming signals influence a protein. TPS could also accommo-

date user-defined assumptions or heuristics about pathway

properties, such as restrictions on pathway length. Such com-

plex constraints cannot be readily included in approaches like

DBN or TimeXNet.

For scalability, TPS requires hard logical constraints instead of

probabilistic constraints (Hinton et al., 2006; Katoen et al., 2005).

Discrete logic models for noisy biological data require modeling

assumptions in order to balance model ambiguity and expres-

siveness. These tradeoffs and assumptions provide additional

opportunities to modify and generalize the TPS model, for

instance, a potential TPS extension to infer feedback in networks

that is described in the Supplemental Experimental Procedures.

As proteomic technologies continue to improve in terms of

depth of coverage (Sharma et al., 2014) and temporal resolution

(Humphrey et al., 2015; Kanshin et al., 2015; Reddy et al., 2016),

the need to systematically interpret these data will likewise grow.

TPS enables reasoning with temporal phosphorylation changes

and physical protein interactions to define what drives the vast

protein modifications that are not represented by existing knowl-

edge in pathway databases.
EXPERIMENTAL PROCEDURES

Temporal Pathway Synthesizer Algorithm Overview

TPS receives three types of input (Figure 1): a time series mass spectrometry

phosphoproteomic analysis of a stimulus response; an undirected PPI subnet-

work; and optional prior knowledge about interaction directions.

The undirected graph is obtained through a static analysis in which the

significantly changing proteins are overlaid on a PPI network. A network

algorithm recovers connections among the affected proteins, removing inter-
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actions that do not form critical connections

between these proteins and nominating hidden

proteins that do, even if they are not themselves
phosphorylated. We recommend PCSF (Tuncbag et al., 2013) to select the

PPI subnetwork but also successfully applied other methods (Gitter et al.,

2011; Patil et al., 2013; Yeger-Lotem et al., 2009).

TPS transforms the input data into logical constraints that determine which

pathway models can explain the observed phosphoproteomic data. Topolog-

ical constraints stem from the filtered PPI network and require that phosphor-

ylated proteins are connected to the source of stimulation, such as EGF, by a

cascade of signaling events. These signaling events propagate along the

edges of the filtered PPI network. Temporal constraints ensure that the order

of the signaling events is consistent with the timing of the phosphorylation

changes. If protein B is downstream of protein A on the pathway, B cannot

be activated or inhibited before A. Prior knowledge constraints guarantee

that if the direction or sign of an interaction is known in advance, the pathway

may not contain the edge with the opposite direction or sign. Typically, many

possible pathways meet all constraints, so TPS summarizes the entire collec-

tion of valid pathways and identifies interactions that are used with the same

direction or sign across all models. A symbolic solver reasons with these

logical constraints and produces the pathway summary without explicitly

enumerating all possible pathway models.

To illustrate this process, consider a hypothetical signaling pathway that

contains a receptor node A and six other downstream proteins that respond

when A is stimulated (Figure 5). The first input is time seriesmass spectrometry

data measuring the response to stimulating the receptor (node A), which

quantifies phosphorylation activity for six proteins. Node B is absent from

the phosphorylation data because it is post-translationally modified, but not

phosphorylated, by A. The second input is an undirected protein-protein inter-

action graph. These are detected independently of the stimulation condition

but filtered based on their presumed relevance to the responding proteins

with an algorithm such as PCSF. By combining phosphorylation data with

the PPI subnetwork, this topology can recover ‘‘hidden’’ components of the

pathway that are not phosphorylated (node B). Finally, TPS accepts prior

knowledge of directed kinase-substrate or phosphatase-substrate interac-

tions, such as the edge C / D. Each of these inputs can be used individually

to restrict the space of plausible pathway models. Reasoning about them

jointly produces more unambiguous predictions than considering each

resource separately.

To formulate temporal constraints, we transform the time series data into a

set of discrete signaling events (activation or inhibition) for each node, taking

an event-based view of the signaling process (Table 1). We determine time

points for each node that correspond to statistically significant phosphoryla-

tion changes. These discrete events are then used to rule out network models

that contain signed, directed paths that violate the temporal ordering of these

events no matter which event is chosen for each node. For example, there can



Table 1. Signaling Timing in the Artificial Example

Node Plausible Temporal Signaling Events

A activated 0 to 1 min

B activated or inhibited at any time

C inhibited 0 to 1 min or 2 to 5 min

D activated 0 to 1 min

E activated 1 to 2 min or 2 to 5 min

F activated 0 to 1 min

G activated 0 to 1 min or 1 to 2 min

Plausible signaling events inferred for each node through a statistical

analysis of the time series phosphorylation data. Although B is modified

in the 0 to 1 min interval, this is not observed in the phosphoproteomic

input data.
be no edge from E to D in any model because D is activated strictly earlier than

E regardless of whether E is activated at 1 to 2 min or 2 to 5 min. Because the

time series data measure the response to a specific stimulus, we also devise

topological constraints that ensure all signaling activity originates from this

source. In our example, this asserts that all edges in a solution network must

be on a directed path that starts at node A. Finally, our third input, the set of

directed interactions, requires that no model violates this prior knowledge by

including an edge from D to C.

Figure 6 shows the pathway models that can be learned using each type of

constraint alone and in combination. When we enforce only temporal con-

straints, which corresponds to reasoning locally with phosphorylation data

for pairs of nodes to seewhether one signaling event strictly precedes another,

we obtain a single precise (signed and directed) prediction from D to E (Fig-

ure 6A). The topological constraints by themselves are sufficient to orient

edges from the source A and from node D because D forms a bottleneck (Fig-

ure 6B). The prior knowledge constrains the direction of the edge from C to D,

but its sign remains unknown (Figure 6C). Jointly enforcing all of these con-

straints has a nontrivial impact on the solution space (Figure 6D). For instance,

we can infer that Fmust activate G. If the edge direction was reversed, F would

be downstream of E, but the data show that activation of F precedes activation

of E. The final model that includes all available data closely resembles the true

pathway structure (Figure 5A). The edges incident to node B are ambiguous,

and the interaction between E and G cannot be uniquely oriented, but all other

interactions are recovered.

The summary for the combination of all constraints produces precise predic-

tions that cannot be obtained by intersecting the summaries for the individual

types of constraints. For instance, TPS infers that the relationship between

F and G must be an activation from F to G because the sole way G can reach

F in a tree rooted at A is through E, but F’s activation precedes E’s. This infer-

ence cannot bemade by combining themodels in panels A, B, and C. The sim-

ple example also highlights the differences in how the TPS constraint-based

approach improves upon related methods based on correlation or the time

point of maximum phosphorylation change (Köksal et al., 2018). See also

Figure S7.

TPS Pathway Synthesis

TPS takes the undirected network from PCSF and transforms it into a collec-

tion of signed, directed graphs that explain dynamic signaling events.

Discretization of Time Series Data

To find pathway models that agree with the phosphorylation dynamics, TPS

first performs a discretization step that determines time intervals in which

each protein may be differentially phosphorylated. The discrete set of activa-

tion and inhibition state changes is then used to rule out networks that violate

the observed temporal behavior.

The transformation consists of finding time points for each profile where

phosphorylation significantly differs from either the baseline (pre-stimulation)

or the previous time point. In the baseline comparison, this time point is

accepted only if it is not preceded by an earlier, larger change with respect

to the baseline. If there is a hypothetical phosphorylation level at which the pro-
tein is activated and acts upon its downstream targets, a signaling event

occurs only at the first time this threshold value is reached. This criterion

does not apply when comparing to the phosphorylation level at the previous

time point. TPS supports missing values in the time series data. The time

points for which a phosphopeptide is missing data are assumed to be insignif-

icant in the discretized data.

In our EGF study, we use Tukey’s HSD test to find significant differential

phosphorylation. If comparing a time point to the baseline or the previousmea-

surement produces a p value below a user-defined threshold, the time point is

marked as a possible activation or inhibition event depending on whether the

phosphorylation level increased or decreased relative to the earlier time point

to which it was compared.

Modeling Assumptions

We assume at most one signaling event happens for every node across time

points. Our logical solver can explore all possible activation and inhibition

events for every node, but the data are often too ambiguous to allow multiple

events per node given a single type of stimulation. In the absence of perturba-

tion experiments that test the pathway behavior under different initial condi-

tions, it is impossible to distinguish between different Boolean logic functions

governing the behavior of each node and whether a node responds to one or

multiple regulators. We therefore formalize pathway models as signed,

directed trees, which provide a sufficient basis for explaining the dynamic sys-

tem behavior under these assumptions.

Translating Input into Constraints

TPS transforms each input into a set of constraints that declaratively specify

valid signed, directed tree models that agree with the data (Supplemental

Experimental Procedures). These constraints are expressed as Boolean for-

mulas with linear integer arithmetic, ranging over symbolic variables that repre-

sent choices on edge signs and orientations as well as how the temporal data

are interpreted. The constraints can then be solved by a satisfiability modulo

theories (SMT) solver to find a networkmodel that satisfies all constraints along

with dynamic timing annotations for each interaction in the network.

Using constraints, we restrict the possible orientation and sign assignments

to signed, directed tree networks rooted at the source node (e.g., EGF).

Furthermore, constraints express how every tree model must agree with the

time series data by establishing a correspondence between the order of nodes

on tree paths and their temporal order of activity according to the time series

data. Finally, we declaratively rule out models that contradict the prior knowl-

edge of kinase-substrate interaction directions. These constraints define a

very large space of candidate networks that agree with the data.

Pathway Summaries

TPS can reason with large state spaces by summarizing all valid pathways

instead of explicitly enumerating them. A summary network is the graph union

of all signed, directed tree networks that satisfy the stated constraints

(Figure 6). Timing annotations are summarized by computing the set of

possible annotations for each node over all solutions. In the graph union,

some edges have a unique direction and sign combination, which signifies

that this was the only observed signed, directed edge between two given no-

des across the solution space. However, this does not guarantee that the edge

between the interacting proteins must be present in all valid pathway models.

Ambiguous directions or signs in the summary means that there are valid

models with different direction or sign assignments.

We compute the summary graph by performing a linear number of SMT

solver queries in terms of the size of the input graph. Each queries whether

at least one signed, directed model contains a specific signed, directed

edge. Because individual queries are computationally cheap, we can summa-

rize the entire solution space without enumerating all models, which is typically

intractable. The summary graph over-approximates the solution space. It is

not possible to recover the exact set of valid models from the summary, only

a superset of the models (Figure S7). This tradeoff must be made in order to

analyze such a large state space.

Using Solvers for Synthesis

TPS uses the Z3 theorem prover (De Moura and Bjørner, 2008) via the

ScalaZ3 interface (Köksal et al., 2011) to solve the constraints it generates. It
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also provides a custom data flow solver specifically for computing pathway

summaries. The custom solver and the symbolic solver produce identical

pathway summaries. However, the custom solver is much more scalable

because it is specifically designed to address our synthesis task and can

handle networks containing more than a hundred thousand edges and phos-

phosites (Figure S6; Köksal et al., 2018).

Cell Culture and Mass Spectrometry

We stimulated EGFR Flp-In cells (Gordus et al., 2009) with 23.6 nM EGF (Pe-

protech) for 0, 2, 4, 8, 16, 32, 64, or 128 min. Cells were lysed and proteins

were extracted, denatured, alkylated, and trypsin digested. Following diges-

tion, the tryptic peptides were either lyophilized, stored for future use, or

directly processed for mass spectrometry analysis. To quantify dynamic

changes in protein phosphorylation, all peptides were isobarically labeled

(Ross et al., 2004), enriched using phosphotyrosine-specific antibodies and/

or immobilized metal affinity chromatography (IMAC) (Ficarro et al., 2002),

and analyzed on a Thermo Fisher Velos Orbitrap mass spectrometer (Ficarro

et al., 2011; Wolf-Yadlin et al., 2006) in data-dependent acquisition mode.

We determined peptide sequences using Comet (Eng et al., 2013; Data S5)

and quantified the iTRAQ signals with Libra (Deutsch et al., 2010). Across three

biological replicates, we quantified 5,442 unique peptides in at least one repli-

cate and 1,068 peptides in all replicates and used Tukey’s honest significant

difference for statistical testing (Data S1). See the Supplemental Experimental

Procedures for details and data processing. Also see our p value sensitivity

analysis (Köksal et al., 2018).

Quantitative Western Blotting

We used 25 nM Dasatinib (no. S1021), 400 nM SCH772984 (no. S7101), and

800 nM MK-2206 (no. S1078; all Selleckchem) for kinase inhibition and anti-

bodies pY221-CRK (no. 3491; Crk-II isoform), pY10-ATP1A1 (no. 3060), and

pS142/143-Zyxin (no. 8467; all Cell Signaling Technology) for western blotting

(Supplemental Experimental Procedures). We normalized loading with b-actin

(no. 3700) and imaged blots with anOdyssey Infrared Imaging System (Li-COR

Biosciences).

PCSF

We used the Omics Integrator PCSF implementation (Tuncbag et al., 2016)

with msgsteiner (Bailly-Bechet et al., 2011) to recover the most relevant PPIs

connecting the phosphorylated proteins. The Supplemental Experimental Pro-

cedures describe how we selected parameters, ran PCSF multiple times to

identify parallel connections between proteins, generated prizes from the

phosphoproteomic data, and created a weighted interaction network from

iRefIndex (Razick et al., 2008) and PhosphoSitePlus (Hornbeck et al., 2015).

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw mass spectrometry proteomics data re-

ported in this paper is PRIDE: PXD006697.

The processed data are in Data S1. TPS (https://github.com/koksal/tps) and

our visualization tool for TPS output (https://github.com/koksal/tpv) are avail-

able as MIT-licensed open source software. An archival copy of TPS version

2.2, including instructions for running the software, example data, and scripts

for linking PCSF and TPS, is available at https://doi.org/10.5281/zenodo.

1215177.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, two tables, and five data files and can be found with this article

online at https://doi.org/10.1016/j.celrep.2018.08.085.
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Supplemental Figures 

 

Figure S1.  Related to Figure 2.  A) Over 95% of the significantly differentially phosphorylated proteins in response 

to EGF stimulation are not included in six of the eight reference pathways.  Conversely, the majority of proteins in 

the reference pathways are not significantly differentially phosphorylated.  The Cancer Cell Map pathway achieves 

the best phosphorylation coverage, but it is still only 11%.  B) Most significantly differentially phosphorylated 

proteins do not appear in any pathway diagram, even when extending the analysis to non-EGFR-specific pathways.  

All EGFR is the union of the EGFR-related pathways in panel A.  All BioCarta, Reactome, and PID reflect the 

union of all pathways in the respective database.  All pathways is the union of all of the above pathways.  

A) 

B) 



Figure S2.  Related to Figure 2.  The percentage of proteins that are significantly differentially phosphorylated and 

overlap with the reference pathways varies by time point.  The percentage is with respect to the number of proteins 

that are significantly differentially phosphorylated at the given time point: 68 (2 min), 97, 63, 34, 28, 17, and 26 

proteins (128 min). 

  



 

Figure S3.  Related to Figure 3.  The full TPS EGF response pathway summary (Supplemental File 3).  Node and 

edge visualizations are as in Figure 3. 

 

 

 

 

 



Figure S4.  Related to Figure 3.  Inhibiting predicted pathway edges.  A) The predicted pathway context of the 

ABL2 to CRK interaction.  B) The pathway context of the AKT1 to Zyxin interaction, which includes BCAR1, 

Zyxin, and all of their neighbors.  The pathway context of the MAPK1 and ATP1A1 interaction is shown in Figure 

3C.  C) Western blots for CRK pY 221, Zyxin pS 142/143 and ATP1A1 pY 10 in the presence and absence of small 

molecule inhibitors targeting their parent node (Dasatinib/ABL2, MK-2206/AKT1, and SCH772984/MAPK1, 

respectively).  The red channel displays detection of the specific phosphorylation sites.  The green channel displays 

detection of β-Actin (a loading control used for normalization of each specific phospho signal).  Two biological 

replicates are shown in each Western blot.  Time "0" indicates no EGF stimulation; "S" is short EGF stimulation 

(four or eight min), and "L" is long EGF stimulation (sixteen or thirty-two min).  Absence or presence of inhibitor is 

shown by "-" and "+", respectively.  D) Quantification of CRK pY 221 phosphorylation (four replicates).  

Phosphorylation levels are relative to the maximum phosphorylation across all conditions and replicates.  An 

asterisk denotes p < 0.05 (two-sided, unpaired, unequal variances t-test).  Whiskers show 1.5 times the interquartile 

range.  E) Quantification of Zyxin pS 142/143 phosphorylation (four replicates).  F) Quantification of ATP1A1 pY 

10 phosphorylation (six replicates). 
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Figure S5.  Related to Figure 4.  The full TPS pathway summary for the yeast osmotic stress response 

(Supplemental File 3).  Node and edge visualizations are as in Figure 3. 

  



 

Figure S6.  Related to Experimental Procedures.  The median running time of TPS over three replicate runs against 

the number of input graph edges in log-log scale. 

  



 

Figure S7.  Related to Figure 6.  An illustration of how the pathway summary graph (Figure 6D) is a generalization 

of the individual pathway models and can also include invalid models.  Not all combinations of direction and sign 

assignments to the ambiguous edges yield pathways that satisfy all constraints.  Here we depict only edges among 

nodes A, B, C, and D.  For simplicity we ignore the models in which one of these edges are absent, even though 

these models are also included in the summarization.  In some cases, B has no valid temporal activity, which we 

denote with the ambiguous temporal annotation (gray).  A) Pathway models in which the signs of edges A-B and B-

D are consistent with the constraint that A and D are both activated.  B) Pathway models in which these edges have 

opposing signs and are included in the summary even though they violate a constraint. 

A) B) 



Supplemental Tables 

Table S1.  Related to Figure 3.  All predicted interactions tested experimentally.  Outcomes are presented in Figure 

S4 and detailed in (Köksal et al., 2018).  MAPK1->MKL1 was tested with two inhibitors.  DRP1 is a synonym for 

DNM1L. 

Inhibit Detect Compound Concentration Antibody Results 

ABL2 CRK Dasatinib 25 nM #3491 Phospho-CrkII 

(Tyr221) 

Figure S4 

AKT1 RANBP3 MK-2206 800 nM #9380 Phospho-RanBP3 

(Ser58) 

No change 

detected 

AKT1 YAP1 MK-2206 800 nM #13008 Phospho-YAP 

(Ser127)  

No band 

detected 

AKT1 ZYX MK-2206 800 nM #8467 Phospho-Zyxin 

(Ser142/143) 

Figure S4 

CDK1 MAP2K1 RO-3306 250 nM #9154 Phospho-MEK1/2 

(Ser217/221) 

No change 

detected 

EGFR CCDC50 Erlotinib 200 nM sc-79367 YMER 

Antibody (I-12) 

No band 

detected 

MAPK1 ATP1A1 SCH772984 400 nM #3060 Phospho-Na,K-

ATPase α1 (Tyr10) 

Figure S4 

MAPK1 MKL1 AZD6244 140 nM Gift from Dr. Ron 

Prywes MKL1 (Ser454) 

No band 

detected 

MAPK1 MKL1 SCH772984 400 nM Gift from Dr. Ron 

Prywes MKL1 (Ser454) 

No band 

detected 

PRKACA DNM1L H-89 480 nM #4867 Phospho-DRP1 

(Ser637)  

No band 

detected 

PRKACA GSK3A H-89 480 nM #8452 Phospho-GSK-3α 

(Ser21) 

No band 

detected 

 

  



Table S2.  Related to Experimental Procedures.  The time point-specific log2 fold changes used to determine 

significance in the yeast osmotic stress phosphoproteomic dataset. 

Time (s) Threshold for 

significant 

dephosphorylation 

Threshold for 

significant 

phosphorylation 

5 -0.4006441 0.3706107 

10 -0.3740002 0.3337672 

15 -0.3561254 0.3403914 

20 -0.3685697 0.3871419 

25 -0.4068662 0.3568199 

30 -0.4895241 0.4388251 

35 -0.5204797 0.4964112 

40 -0.4190634 0.4029404 

45 -0.3548886 0.3397075 

50 -0.4688706 0.4645637 

55 -0.4468361 0.3969267 

60 -0.4861253 0.4287856 

 

  



Supplemental Experimental Procedures 

Cell culture, stimulation, and generation of peptides 

Flp-In 293 cells expressing EGFR were described previously (Gordus et al., 2009) and have been used in our 

previous studies of receptor tyrosine kinase signaling (Wagner et al., 2013).  These isogenic cells do not express 

EGFR heterodimerization receptor partners, and receptor quantities are uniform across cells (~100,000 EGFR/cell).  

We selected EGFR Flp-In cells for this study because they are easy to manipulate and provide full control of the 

input signal.  We know the number of receptors per cell and thus the ligand concentration necessary to achieve 

different levels of saturation.  Most importantly, because EGFR Flp-In cells are homogeneous with respect to EGFR 

expression, this system ensures high reproducibility between replicates and minimizes effects of heterogeneous 

receptor expression between different samples and time points.  Although their signaling response may differ from 

in vivo responses in human tissues, this system ensures the phosphorylation changes are EGFR-specific. 

Cells were grown using standard cell culture procedures in Dulbecco's modified Eagle's medium supplemented with 

10% (v/v) fetal bovine serum, 2 mM glutamine, 100 U/ml penicillin, 100 μg/ml streptomycin, and 150 μg/ml 

hygromycin B.  For the activation of the EGF receptor, the cells were grown in plates to approximately 70% 

confluency, then washed once with phosphate-buffered saline (PBS) and incubated for 16 hours in serum-free 

medium.  Subsequently cells were stimulated with 23.6 nM EGF (Peprotech) for 0, 2, 4, 8, 16, 32, 64, or 128 

minutes.  Untreated plates were used for the 0 min time point.  After EGF stimulation, cells were lysed on ice with 3 

ml of 8 M urea supplemented with 1 mM Na3VO4.  A 10 μl aliquot was taken from each sample to perform the 

micro bicinchoninic acid protein concentration assay (Pierce) according to the manufacturer’s protocol.  Cell lysates 

were reduced with 10 mM DTT for 1 hr at 56 °C, alkylated with 55 mM iodoacetamide for 45 min at room 

temperature, and diluted to 12 ml with 100 mM ammonium acetate; pH 8.9. 40 μg trypsin (Promega) was added to 

each sample (~200:1 substrate to trypsin ratio) and the lysates were digested overnight at room temperature.  The 

whole cell digest solutions were acidified to pH 3 with acetic acid (HOAc) and loaded onto C18 Sep-Pak Plus C18 

Cartridges (Waters).  The peptides were desalted (10 mL 0.1% trifluoroacetic acid (TFA)) and eluted with 10 mL of 

a solution comprised of 40% acetonitrile (MeCN) with 0.1% TFA.  Each sample was divided into ten aliquots and 

lyophilized overnight to dryness for storage at –80°C. 

The peptides were then labeled using 8-plex iTRAQ reagents (Ab Sciex) according to the manufacturer’s 

instructions.  200 µg of lyophilized peptides were resuspended in 30 µl of dissolution buffer, and the corresponding 

iTRAQ reagent dissolved in 70 µl isopropanol was added.  The mixtures were incubated at room temperature for 1 

hr and concentrated to ~30 μl. Samples labeled with eight different isotopic iTRAQ reagents were combined and 

dried to completion.  The sample was then rehydrated in 500 µl (0.1% HOAc) and desalted using a Sep-Pack Vac 

C18 column (Waters).  The peptides were eluted with 80% acetonitrile, 0.1% HOAc. The eluate was evaporated to 

100 µl in the SpeedVac and lyophilized. 

Phosphopeptide enrichment, mass spectrometry, and identification 

Peptides containing phosphotyrosines were enriched using immunoprecipitation (IP).  12 µg of each of the 

antibodies P-Tyr-1000 (Cell Signaling Technologies), 4G10 (Millipore), and PT-66 (Sigma-Aldrich) were bound to 

20 µl of packed protein G Plus agarose beads (Calbiochem) in IP buffer (100 mM Tris-HCl pH 7.4, 0.3% NP-40).  

The lyophilized peptides were rehydrated with IP buffer, and the pH of the solution was adjusted to 7.4 using 100 

mM Tris-HCL ph 8.5.  The peptide sample was added to the beads and incubated for 4 hours.  The supernatant was 

then removed and saved for the next step.  The beads were washed extensively using IP buffer, 100 mM Tris-HCl 

and H2O.  The bound peptides were eluted using 50 µl 15% acetonitrile/0.1% TFA.  

Serine and threonine (and remaining tyrosine) phosphorylated peptides were enriched from the IP supernatant using 

immobilized metal affinity chromatography.  Briefly, protein concentration was adjusted to 1 mg/ml protein using 

wash buffer (80% MeCN/0.1%TFA).  100 µl of Ni-depleted Ni-NTA Superflow beads (Qiagen) were activated with 

100 mM FeCl3.  The supernatant was loaded onto the beads and incubated for 1hr.  After washing the beads three 

times with wash buffer, the bound peptides were eluted twice with 1.4% ammonium hydroxide.  The eluates were 

combined and evaporated in a SpeedVac to 5-10 µl.  The sample was then reconstituted to a total volume of 20 µl in 

20 mM ammonium formate pH 9.8. 

All mass spectrometry experiments were performed on a Thermo Fisher Velos Orbitrap mass spectrometer (Ficarro 

et al., 2011; Wolf-Yadlin et al., 2006; Zhang et al., 2005) equipped with a nanospray ionsource coupled to a 



nanoACQUITY Ultra Performance LC system (Waters) equipped with two binary pumps.  Samples were separated 

using either 1D (IP eluate) or 2D (IMAC eluate) chromatography.  For the 1D separation, the sample was loaded 

onto a 5 cm self-packed (Reliasil, 5 µm C18, Orochem) pre-column (inner diameter 150 μm) connected to a 20-cm 

self-packed (ReproSil, 3 µm C18, Dr. Maisch) analytical capillary column (inner diameter 50 μm) with an integrated 

electrospray tip (∼1 μm orifice).  Peptides were separated using a 115-minute gradient with solvents A (H2O/formic 

acid (FA), 99.9:1 (v/v)) and B (MeCN/FA, 99.9:1 (v/v)) as follows: 1 min at 2% B, 84 min from 98 to 40% B, 5 min 

at 40% B, 20 min at 20% B, and 14 min at 2% B.  For the 2D reverse phase chromatography, the sample was first 

loaded onto a 5 cm self-packed Xbridge column (Waters, inner diameter 150 μm) and eluted with a 7-step gradient 

of 1, 3, 6, 9, 13, 25, and 44% B with solvents A (H2O/20 mM ammonium formate pH 9.8) and B (MeCN/20 mM 

ammonium formate, pH 9.8).  The eluted sample was directly loaded onto a 5 cm self-packed precolumn (Reliasil, 5 

µm C18, Orochem), which was connected to a 20 cm self-packed analytical column (ReproSil, 3 µm C18, Dr. 

Maisch).  The peptides were eluted with the same gradient as described above in the second dimension. 

Eluted peptides were directly analyzed using the Velos-Orbitrap mass spectrometer operated in data-dependent 

acquisition (DDA) mode to automatically switch between MS and MS/MS acquisitions.  The Top 10 method was 

used, in which full-scan MS (from m/z 350–2000) was acquired in the Orbitrap analyzer at 120,000 resolution, 

followed by high-energy, collision-induced dissociation (HCD) MS/MS analysis (from m/z 100–1700) of the top 10 

most intense precursor ions with a charge state >2.  The HCD MS/MS scans were acquired using the Orbitrap 

analyzer at 15,000 resolution at a normalized collision energy of 45%, with the ion selection threshold set to 10,000 

counts.  Precursor ion isolation width of 2 m/z was used for the MS/MS scans, and the maximum allowed ion 

accumulation times were set to 500 ms for full (MS) scans and 250 ms for HCD (MS/MS).  The standard mass 

spectrometer tune method settings were as follows: Spray Voltage, 2.2 kV; no sheath and auxiliary gas flow; heated 

capillary temperature, 325 C; Automatic Gain Control (AGC) enabled.  All samples were analyzed by LC-MS/MS 

in biological triplicates. 

MS/MS data files were searched against the human protein database using Comet (Eng et al., 2013).  Variable 

(phosphorylation of serine, threonine, or tyrosine, 79.966331 Da, methionine oxidation, 15.9949 Da) and static 

(carbamidomethylation of cysteine, 57.02 Da and the iTRAQ modification of 304.205360 Da to peptide N-terminus 

and lysine side-chains) modifications were used for the search (Supplemental File 5).  We applied a 1% false 

discovery rate threshold at the peptide level.  Quantitation of the iTRAQ signals was performed using Libra 

(Deutsch et al., 2010).  We deposited the raw mass spectrometry data to the ProteomeXchange Consortium via the 

PRIDE (Vizcaíno et al., 2016) partner repository. 

Mass spectrometry data analysis and temporal phosphorylation significance 

We obtained two technical replicates for each of the three biological replicates, quantifying IP and IMAC eluate 

separately (Supplemental File 1).  To decrease noise, we applied an iTRAQ channel intensity cutoff of 5,000 for IP 

and 10,000 for IMAC (arbitrary units), removing peptides that did not exceed the threshold in at least one channel.  

We median centered the data within each channel by dividing the signal by the channel median.  For each biological 

replicate, we concatenated the technical replicates and the IP and IMAC intensities.  We removed non-

phosphopeptides and aggregated the signal for phosphopeptides with the same sequence (regardless of post-

translational modifications) by summing the normalized values (Supplemental File 1).  Across the three biological 

replicates, we quantified 5,442 unique peptides in at least one replicate and 1,068 peptides in all replicates.  We 

focused on these 1,068 peptides for the computational modeling because the repeated observations indicate more 

reliable quantification and let us assess the significance of phosphorylation changes (Supplemental File 1). 

After filtering peptides missing data in one or more biological replicates, we median centered the data again and 

performed Tukey's Honest Significant Difference (HSD) test (Yandell, 1997) for each peptide (Supplemental File 

1).  Tukey's HSD test reports the significance in the difference of the mean peptide intensities for all pairs of time 

points, correcting for the multiple comparisons within each peptide’s time course.  It is conceptually similar to 

performing t-tests for all pairs of time points, but it conducts all tests simultaneously and adjusts for multiple testing 

appropriately.  Although we have temporal data, we selected Tukey’s HSD test instead of a temporal statistical test 

like EDGE (Leek et al., 2006) because TPS requires a test statistic for individual time points, not the entire time 

course. 

Tukey’s HSD test is already quite conservative (Yandell, 1997).  However, it does not correct for the multiple 

comparisons from testing multiple peptides.  As a precaution, we computed q-values (Storey and Tibshirani, 2003) 



from the distribution of p-values for all pairs of time points and all peptides.  Our p-value threshold p < 0.01 is 

equivalent to a q-value threshold q < 0.188, which we consider to be an acceptable false discovery rate for this 

application.  In addition, the predicted network is reasonably robust to the choice of p-value threshold (Köksal et al., 

2018). 

Our temporal analysis was based on two types of significant changes in phosphorylation: changes relative to the 

baseline (0 minute) time point and changes relative to the previous time point.  For each time point, we took the 

smaller of these two p-values (comparison to baseline or previous) from Tukey's HSD test as the significance of that 

time point and produced an aggregate p-value for the peptide as the minimum such p-value over all time points.  The 

aggregate p-value serves as a proxy of whether the peptide significantly changes in response to stimulation at any 

time point, and 263 peptides responded significantly (p < 0.01).  In addition, we calculated a summary 

phosphorylation profile for each peptide by taking the median value at each time point.  In order to visualize the log2 

fold changes (as in Figure 2B), we used the only non-zero replicate for the three peptides where the median value 

was zero.  This substitution was only for visualization; TPS does not operate on fold changes.  We mapped peptides 

to UniProt identifiers, using the best-matching protein identifier for each peptide. 

We cannot recover a kinetic model of kinase (or phosphatase) activity from the mass spectrometry data, but our 

temporal constraints assume that there is an unknown, hidden phosphorylation level at which a kinase (phosphatase) 

begins to substantially (de)phosphorylate its target.  This phosphorylation level may vary by protein, so we do not 

set a threshold on the phosphorylation fold change.  Furthermore, the protein may continue to increase (or decrease) 

in phosphorylation past this critical level even after it has begun to affect the substrate, so we do not assume that the 

time of peak phosphorylation is the only relevant time. 

Quantitative Western blotting 

The following kinase inhibitors were used at the following concentrations: 25 nM Dasatinib (#S1021), 400 nM 

SCH772984 (#S7101), and 800 nM MK-2206 (#S1078, all Selleckchem).  The Flp-In 293 EGFR cells were serum-

starved for 16 hours in growth medium without FBS.  Then, if indicated, the kinase inhibitors were added and 

incubated with the cells for 60 min.  Only DMSO was added to control cells.  After stimulation with 23.6 nM EGF 

for the indicated times, the cells were lysed using RIPA buffer (25mM Tris-HCl pH 7.6, 150mM NaCl, 1% NP-40, 

1% sodium deoxycholate, 0.1% SDS) with 1 mM sodium orthovanadate.  Cells without EGF stimulation were used 

as controls (0 min time point).  After incubation on ice for 15 minutes, the lysates were centrifuged at 21000 g for 10 

min, and the protein concentration of the supernatants was determined.  Protein amounts were adjusted to 30–50 ug 

protein/well, and protein phosphorylation was assessed by SDS separation and Western blotting.  The membranes 

were probed with the following antibodies at a dilution of 1:1000: pY221-CRK (#3491, Crk-II isoform), pY10-

ATP1A1 (#3060), and pS142/143-Zyxin (#8467, all Cell Signaling Technologies).  β-actin (#3700) was used to 

normalize loading across the gel.  Fluorescently labeled secondary antibodies were added according to the 

manufacturer’s instructions at 1:5000 (Goat anti rabbit IRDye 680 and Goat anti mouse IRDye 800, Li-COR 

Biosciences).  Blots were imaged using an Odyssey Infrared Imaging System (Li-COR Biosciences).  Quantification 

of the phosphorylated proteins was performed with the Odyssey analysis software. 

Translating the input into constraints 

A symbolic signed, directed graph that assigns a sign and direction to each edge in (a subgraph of) the undirected 

input graph can be represented by maintaining four Boolean variables per edge, one for each sign-orientation 

combination.  The truth value of a variable denotes whether there is an edge with the corresponding sign and 

orientation in the solution network.  To find a tree network model rooted at the stimulated source node, we need to 

constrain these truth values.  First, we assert that at most one of these four variables can be true.  The case where all 

four variables are false corresponds to the undirected edge being excluded from the solution network.  Then, we 

assert that there are no cycles in the solution graph.  To implement the acyclicity constraint, we maintain one 

integer-valued variable per node and assert that the integer values along all directed paths must monotonically 

increase.  Finally, we assert that if a non-source node has an outgoing edge, it must have an incoming edge as well.  

This prevents modeling spurious phosphorylation changes that are not caused by the source’s stimulation.  These 

constraints together guarantee that we obtain a tree network model in which all edges are on a directed path 

originating at the source node. 

Example:  The edge (A, B) in the undirected graph shown in Figure 5C, like all other edges in the network, is 

translated into four Boolean variables, activation-A-B, inhibition-A-B, activation-B-A, inhibition-B-A.  We ensure at 



most one variable is true by asserting that if one of the variables is true, the rest must be false.  For instance, we 

assert: 

activation-A-B ==> !inhibition-A-B && !activation-B-A && !inhibition-B-A 

which means that if activation-A-B is true, the remaining variables must all be false.  Both A and B have an 

associated integer variable, index-A and index-B, and we state that if there is an edge from A to B, B must be 

assigned a greater value than A: 

activation-A-B || inhibition-A-B ==> index-A < index-B 

A similar constraint is asserted for the opposite direction.  Finally, we create a constraint that requires B to have an 

incoming edge if it has an outgoing edge, based on its neighbors in the undirected graph: 

activation-B-A || inhibition-B-A || activation-B-D || inhibition-B-D 

==> 

activation-A-B || inhibition-A-B || activation-D-B || inhibition-D-B 

These constraints together guarantee that a valid solution must be a tree network rooted at A.  ■ 

While the above constraints will ensure that solutions satisfy topological properties, they don’t constrain models 

with respect to the temporal data.  Using the temporal events computed from the time series data, TPS requires that 

the sequence of nodes in each signed, directed path of a tree model must be supported by a corresponding 

temporally ordered sequence of phosphorylation events.  In the example from Figure 5, there can be no models that 

include an edge from E to D, because it is impossible for E to precede D in a directed path due to all possible 

activations of E being later than the possible activation of D (Table 1).  The same example shows that the temporal 

ordering along paths can also have an effect beyond pairwise interactions.  The sequence of nodes E, G, F cannot 

appear on a directed path, even though both pairwise interactions are locally consistent, because E can only be 

activated strictly after F.  Concretely, this constraint is enforced by keeping an integer-valued variable for each node, 

which corresponds to the choice of activation time for that node.  The same is done for representing inhibitions, and 

we assert that at most one of the two events can occur.  We restrict the values that the activation variable can take to 

the time points computed in the discretization step.  Finally, we state that if there is an edge from A to B in the 

signed, directed tree, there must be corresponding choices of time points for A and B that support the interaction.  

An activation edge from A to B must be supported by the activation (respectively, inhibition) of A, succeeded by the 

activation (respectively, inhibition) of B; similarly, an inhibition from A to B requires finding an activation 

(respectively, inhibition) of A, succeeded by the inhibition (respectively, activation) of B.   

Example:  Consider the nodes D and E in Figure 5.  We constrain activation choices for D to be 0 (no activation) or 

1 (the first time interval): 

activation-D == 0 || activation-D == 1 

Similarly, E is either not activated or is active in intervals 2 or 3: 

activation-E == 0 || activation-E == 2 || activation-E == 3 

Finally, we assert that if there is an activation from D to E, both nodes must be activated or inhibited, in that order: 

activation-D-E ==> 

activation-D != 0 && activation-E != 0 && activation-D <= activation-E 

We only show constraints for the activation of E by D through their successive activation events, the other cases are 

similar.  ■ 



The last type of constraint that TPS enforces follows simply from the prior knowledge information.  For all known 

kinase-substrate interactions (given as directed, unsigned edges), no pathway model can include an edge directed in 

the opposite orientation.  This is implemented by ruling out certain values for the edge variables if data is available 

for a given edge.  TPS currently represents kinase-substrate interactions as unsigned but could be trivially extended 

to treat kinase-substrate interactions as positive edges and phosphatase-substrate interactions as negative edges. 

Example:  In the example from Figure 5D, we are given the kinase-substrate interaction C-D.  As a result, we rule 

out the opposite direction: 

!activation-D-C && !inhibition-D-C 

■ 

Extending constraints to model feedback loops 

Although TPS does not model feedback loops, it is possible to extend our declarative constraint solving approach to 

infer network models with feedback.  We sketch below one way to allow each node to change its binary activity 

level up to N times, thereby allowing a node's early activity to influence its late activity through cycles in the 

network model.  The high level idea consists of using multiple copies of the constraint system we describe above, 

each copy corresponding to a different "layer" in the network.  Conceptually, each layer describes temporal activity 

that comes after all activity in the previous layer.  While each layer corresponds to a tree network (using our existing 

constraint system), their composition represents cyclic graphs that can model feedback. 

For the layered system of constraints, we need to formulate constraints that relate each successive layer to its 

predecessor.  Specifically, having an outgoing edge from a node in a given layer requires the same node to have an 

incoming edge in the same layer or the preceding layer.  Furthermore, because each layer corresponds to activity 

that follows the previous layer, the activation interval of a node in one layer must not come before its chosen 

activation interval in the preceding layer.  Together, these requirements ensure that all activity seen across layers 

originates from the source node in the first layer, and the order of node activations across layers is correct. 

Example:  We revisit the constraints generated for the edge A-B in the example undirected graph shown in Figure 

5C.  If we want to model at most two activity intervals per node, we will have two copies of the Boolean variables 

expressing the sign and orientation of the edge, and we will ensure that at most one Boolean variable is true per 

layer by asserting the constraint below.  We refer to the Boolean variable representing an activation from A to B in 

layer i as activationi-A-B. 

activation1-A-B ==> !inhibition1-A-B && !activation1-B-A && !inhibition1-B-A 

&& 

activation2-A-B ==> !inhibition2-A-B && !activation2-B-A && !inhibition2-B-A 

The modified connectivity constraint for node B will now require B to have an incoming edge in the current layer or 

the previous layer based on its neighbors in the undirected graph.  For instance, we will assert the following for layer 

2: 

activation2-B-A || inhibition2-B-A || activation2-B-D || inhibition2-B-D 

==> 

activation2-A-B || inhibition2-A-B || activation2-D-B || inhibition2-D-B 

|| 

activation1-A-B || inhibition1-A-B || activation1-D-B || inhibition1-D-B 

■ 



It is possible to further extend this modeling approach to require successive activations of the same node to 

correspond to distinct time intervals.  This can be achieved by asserting that if a node has an incoming edge in layer 

i and an outgoing edge in a preceding layer j, then the activation interval picked for layer i must come strictly after 

the interval picked for layer j. 

Example:  For our running example, we will assert the following constraint for node B.  We denote the variable 

corresponding to the activation interval chosen for B in layer i as activationi-B. 

activation2-A-B || inhibition2-A-B || activation2-D-B || inhibition2-D-B 

&& 

activation1-B-A || inhibition1-B-A || activation1-B-D || inhibition1-B-D 

==> 

activation1-B < activation2-B 

 ■ 

This approach to model feedback loops using constraints is similar to the way dynamic Bayesian networks create 

multiple copies of each variable by "unrolling" the network over each time point.  Whereas DBNs have to make N 

copies of the network for N time points, we only need one copy per node activation.  Using the above constraint 

formulation, a solution without feedback loops will still use only one copy of each variable.  If we allow two 

activations per node, we will only need two copies of each variable, irrespective of how many time points there are 

in the time course dataset. 

Pathway summarization 

The space of all valid pathway models with timing annotations defined by the constraints we specified is typically 

very large, and enumerating all models is not computationally feasible.  Given an undirected network G with V 

nodes and E edges, along with T time points, there are 5E ways of assigning a sign and orientation to edges of G and 

(T*2 + 1)V ways of assigning timing annotations to its nodes.  Even for a network with 200 edges, the number of 

possible sign and orientation assignments is 6*10139.  Pathway summarization supports these large state spaces 

because is it intractable to enumerate all valid pathway models. 

The main text describes the edge query procedure used to generate pathway summaries.  The example summary in 

Figure 6 and the summary expansion in Figure S7 illustrate how this summary can contain a superset of the valid 

pathway models.  There exists no valid model that contains an activation from A to B and an inhibition from B to D.  

The existence of the first edge dictates that B is activated, which implies an inhibition from B to D would decrease 

D’s activity, contrary to what is observed in D’s temporal activity profile.  However, the knowledge that the edges 

A-B and B-D must have the same sign is lost through the summarization process. 

For visualization and analysis purposes, pathway summaries are depicted as interactions among proteins even 

though the temporal consistency constraints operate at the level of individual peptides when peptide-level data are 

available.  The protein-level summaries collapse the expanded PPI network, which can introduce ambiguities if there 

are interactions that are unambiguous at the peptide-level that conflict in terms of direction or sign at the protein-

level.  TPS is able to detect and report this loss of precision when transitioning to the protein-level network. 

A final summarization observation relates to the distinguishability problem between trees and directed acyclic 

graphs (DAGs) that we discussed in the context of our modeling assumptions.  We note that summarizing the space 

of all tree models as a union graph leads to the same result as summarizing the space of DAGs satisfying the same 

properties.  This stems from the fact that for each DAG model, there exists a set of tree models whose union is the 

DAG.  As a result, the union of all tree models corresponds to the union of all DAGs. 

Tradeoffs between ambiguity, expressiveness, and correctness 

The modeling assumptions made when interpreting and translating biological data into logical constraints have 

complex effects on the degree of ambiguity, expressiveness, and accuracy of the resulting pathway summary.  Even 

with temporal information, many pathway structures can explain the ordered signaling events.  This motivates the 



reduction of ambiguity with hard logical constraints, where each constraint is fully trusted, instead of with 

probabilistic constraints (Hinton et al., 2006; Katoen et al., 2005), where a constraint can potentially be violated. 

In the PPI network, we allow paths only through chains of experimentally detected PPI.  In settings where the PPI 

network is less complete, we could include edges among highly correlated phosphorylated proteins or predicted 

interactions based on protein sequence, protein structure, pathway connectivity, or literature mining (Lees et al., 

2011; Mosca et al., 2013).  The pre-processing step that filters the PPI network operates on a weighted network.  

These additional edges could be assigned lower weights so that PCSF includes them in the TPS input network only 

if they are critical for connecting significantly phosphorylated proteins.  This would reduce the impact of missing 

interactions on TPS pathways at the cost of potentially increasing ambiguity because there would be more possible 

paths through which signal can flow. 

Likewise, we observe that some proteins, such as RAS and RAF family members, are not included in the TPS 

pathway because our mass spectrometry data do not detect their phosphorylation.  To increase robustness to 

potential false negatives in the mass spectrometry, the input PPI network could be modified to include edges from 

relevant reference pathways with high weights (similar to (Patil et al., 2013)) so that PCSF prefers to include these 

interactions instead of other high-confidence connections in the PPI network.  The weight of these prior knowledge 

edges would control the tradeoff between condition-specific de novo pathway discovery and conformance with prior 

knowledge. 

Unlike single-cell mass cytometry data, where the peak activity times of a small number of phosphoproteins can be 

resolved precisely (Krishnaswamy et al., 2014), phosphorylation timing in cell population-level mass spectrometry 

data is inherently ambiguous.  Therefore, instead of rigidly determining a protein’s time of activity by selecting the 

time point at which the greatest phosphorylation change is observed, TPS takes a more general approach.  It allows a 

protein to be activated or inhibited whenever the phosphorylation significantly differs from the level before 

stimulation or at the immediately preceding time point as long as it is the first time at which that phosphorylation 

level has been observed.  We focus on the initial pulse of signaling activity following stimulation, sampling more 

early time points in our EGF response study because we are more confident that these changes in phosphorylation 

intensity are due to PTMs instead of changes in protein abundance.  Feedback loops cannot be detected when 

learning a single activation or inhibition time per peptide, a modeling decision we made in our three case studies.  

However, the TPS framework makes it possible to allow multiple activity changes per peptide in future applications, 

as we outlined above.  Statistical tests of the temporal phosphorylation profiles could determine the number of 

significant activity changes for each peptide.  Then, TPS could search for pathway structures with feedback loops 

that explain the multiple activation or inhibition events per peptide. 

Lastly, we recognize that different phosphopeptides on the same protein can have different phosphorylation changes 

over time, and we allow each peptide to have its own activation times instead of forcing a single time per protein.  

This decision can lead to ambiguous edge direction predictions at the protein-level even when the directions are 

consistent at the peptide level.  For example, DOCK1 interacts only with BCAR1 (Figure S4B), yet the direction and 

sign of the interaction are ambiguous.  The uncertainty arises because BCAR1 is phosphorylated on both Y249 and 

Y387.  TPS correctly concludes that the sign cannot be determined because one site could activate DOCK1 and then 

feed back and affect the other BCAR1 site. 

Prize-collecting Steiner forest 

PCSF recovers the sparse subnetwork F = (VF,EF) from a dense PPI network that links proteins of interest by solving 

argmin
𝐹

∑(𝛽 ∙ 𝑝(𝑣) − 𝜇 ∙ 𝑑(𝑣)) +

𝑣∉𝑉𝐹

∑ 𝑐(𝑒) +

𝑒∈𝐸𝐹

𝜔 ∙ 𝜅 

where p is a positive score (prize) that reflects the relevance of a vertex (protein) v, d is the degree (number of 

neighbors) of v, c is a positive cost for including an edge (interaction) e in the subnetwork, and κ is the number of 

disconnected trees in the subnetwork.  Parameters β, µ, and ω control the size and structure of the solution 

subnetwork.  We swept over many PCSF parameter combinations and identified the parameters that produced 

reasonably large subnetworks containing many phosphorylated proteins.  Including a greater fraction of 

phosphorylated proteins in the PCSF subnetwork, as opposed to the connective Steiner nodes without observed 

phosphorylation changes, provides more temporal information for the TPS constraints.  An advantage of PCSF is 



that it nominates pathway members that are not detected by the mass spectrometry but form critical pathway 

connections to phosphorylated proteins, like ABL2 and AKT1 in our EGF response study (Figure S4). 

In our EGF response analysis, we computed the node prize for each protein using the minimum peptide p-value over 

all peptides that map to the protein.  We computed prizes as − log10 𝑝𝑣𝑎𝑙𝑢𝑒, yielding 701 protein prizes.  The 

proteins were not filtered at a particular p-value threshold.  There are no replicates in the Olsen et al. EGF response 

dataset so we used phosphorylation fold changes to define prizes instead of p-values.  For each peptide, we 

computed the log2 phosphorylation fold changes at each time point with respect to both the previous time point and 

the initial 0 minute time point.  We extracted the maximum absolute value log2 fold change for each peptide as the 

peptide prize.  We then derived protein prizes by taking the maximum peptide prize over all peptides that map to a 

protein. 

The human PPI network we used for both EGF analyses was obtained from two sources: 159,095 undirected 

interactions from iRefIndex (version 13.0) (Razick et al., 2008) and 4,080 directed kinase-substrate interactions 

from PhosphoSitePlus (downloaded October 16, 2013) (Hornbeck et al., 2015).  The iRefIndex database provides 

interaction confidence scores that are inspired by the Molecular INTeraction database (MINT) (Ceol et al., 2010; 

Villaveces et al., 2015), which account for the number of publications supporting the interaction, the type of 

interaction, and the experimental detection methods.  Similarly, we scored the directed interactions based on the 

number of interactions reported for each kinase-substrate pair (across all substrate sites) and whether an interaction 

was detected in vitro, in vivo, or both.  When merging the iRefIndex and PhosphoSitePlus interactions, if both 

databases reported an interaction between a pair of proteins we retained the more specific, directed kinase-substrate 

interaction and its weight, discarding the undirected iRefIndex interaction.  The final network contains 15,677 

proteins, 157,984 undirected interactions, and 3,917 directed interactions (reciprocal pairs of directed edges with the 

same score are represented as an undirected edge).  It contains 653 of the 701 proteins with mass spectrometry-based 

prizes from our EGF response data.  PCSF respects the direction of the kinase-substrate interactions so that they can 

only be used in the specified direction. 

We derived PCSF protein prizes for the yeast osmotic stress study from the time-point specific salt/control log2 fold 

changes.  For each protein, we computed the maximum absolute value log2 fold change considering all 

phosphopeptides mapping to that protein and all time points.  This produced 1,596 protein scores from the 4,337 

phosphopeptides.  Because a complete control time series was available, we also used the temporal salt versus 

control log2 fold changes to obtain the temporal significance scores for TPS.  Kanshin et al. used the non-

phosphorylated peptides that were not filtered during phosphopeptide enrichment to define a null distribution of log2 

fold changes at each time point (Kanshin et al., 2015).  From these null distributions, they derived time point-

specific log2 fold change thresholds that correspond to a p-value < 0.05 after adjusting for multiple hypothesis 

testing (Table S2).  We called a phosphopeptide significant at any time point where its log2 fold change was more 

extreme than the time point-specific threshold, which produced 1,401 phosphopeptides and 784 proteins with 

significant dynamic responses.  We did not consider the 0 second fold changes.  All analyses considered only the 

singly phosphorylated (1P) peptides. 

Chasman et al. compiled the yeast interaction network we used for the osmotic stress model from many sources 

(Chasman et al., 2014), with the vast majority of kinase-substrate interactions coming from Ptacek et al. (Ptacek et 

al., 2005).  We removed edges where the interaction evidence was listed as "inferred" or the edge type was "cxcx", 

"cxorf", or "metapath".  To emphasize post-translational modifications, we retained 7,583 directed interactions from 

this network, which included 4,875 phosphorylation-specific interactions with the edge type "kinasesubstrate", 

"literaturephos", or "phosphatasesubstrate".  Not all source nodes were connected to the rest of the network with 

these directed edges so we also included 32 undirected PPI between the sources and other proteins.  Because the 

network was originally unweighted, we assigned a default weight of 0.5 to all 7,615 edges. 

The PCSF parameters β, µ, and ω influence the structure of the optimal PPI subnetwork (Tuncbag et al., 2016).  As 

β grows, the incentive to include (de)phosphorylated proteins increases, outweighing the expense of adding 

additional edges to connect them.  The PCSF solution includes novel proteins, termed Steiner nodes, that are not 

phosphorylated but are useful for connecting the proteins with positive prizes.  To control for hub proteins in the 

Steiner forests, which can produce non-condition-specific solutions due to their high-connectivity and ability to link 

many phosphorylated proteins, µ penalizes the inclusion of high-degree nodes.  Large µ results in fewer hubs in the 

forest. 



In order to select the parameters β and µ for our EGF response data, we ran PCSF with all combinations of β from 

0.05 to 1.0 (step size of 0.05) and µ from 0 to 0.01 (step size of 0.001), producing 220 Steiner forests.  Because the 

source of stimulation is known and specific, we rooted the subnetwork at EGF.  This forces κ = 1, reducing the 

problem to the prize-collecting Steiner tree problem and removing the influence of ω.  We set msgsteiner’s 

parameters D = 10 and g = 0.001 (msgsteiner version 1.1) (Bailly-Bechet et al., 2011).  After removing the 34 small 

or empty solutions with two or fewer Steiner nodes, we selected β = 0.55 and µ = 0.008, the solution that maximized 

the fraction of proteins in the Steiner forest that had prizes (were phosphorylated or dephosphorylated in response to 

EGF).  In order to recover alternative connections among the (de)phosphorylated proteins, we generated a collection 

of 100 PCSF networks.  For each PCSF run, we used the previously selected β and µ and added random noise to all 

interaction costs by setting msgsteiner’s r = 0.01.  The union of these 100 networks was used as input to TPS. 

The Olsen et al. EGF response PCSF analysis used the same source node, parameter sweeping strategy, and 

msgsteiner parameters (msgsteiner version 1.3).  For this dataset, we discarded 47 solutions with two or fewer 

Steiner nodes, including empty networks, and chose β = 0.45 and µ = 0.005 for generating the final collection of 100 

PCSF networks.  These parameters produced a network in which the fraction of proteins with prizes, 0.88, was 

slightly less than the maximum over all solutions, 0.90.  However, we preferred this network because it was closer in 

size to the PCSF network obtained using our EGF response data, facilitating their direct comparison. 

For the yeast osmotic stress study, we selected the five sources from the KEGG yeast high osmolarity pathway: 

Hkr1, Msb2, Opy2, Sho1, and Sln1.  We ran PCSF with all combinations of β from 0.25 to 10.0 (step size of 0.25), 

µ from 0 to 0.1 (step size of 0.005), ω from 0.5 to 10 (step size of 0.5), generating 16,800 Steiner forests.  We 

discarded 14,562 solutions with two or fewer Steiner nodes, including empty networks.  Multiple Steiner forests had 

the same fraction of proteins with prizes, all of which had the same β and µ parameters.  From this set of forests, we 

selected β = 1.75, µ = 0.095, and ω = 4.5 to generate a collection of 1000 Steiner forests using the same msgsteiner 

parameters as the EGF analyses (msgsteiner version 1.3). 

For all three phosphoproteomic datasets, the temporal phosphorylation data included measurements of individual 

peptides.  TPS expands the subnetwork from PCSF by replacing each protein node by a collection of peptide nodes.  

These peptide nodes are all peptides that are significantly phosphorylated in the mass spectrometry data and map to 

the protein.  The protein-protein edges are transformed to peptide-peptide edges by connecting all peptide nodes that 

replace protein A to all peptides nodes that replace protein B if there was a PPI between A and B. 

Phosphoproteomic and network data randomization 
We performed three types of data randomization to evaluate the impact on the TPS predictions for our EGF response 

data.  First, we permuted the peptide to protein assignments.  Next, we permuted time points within each time course 

except for the baseline (0 min) time point.  Finally, we permuted the PPI network with BiRewire (Iorio et al., 2016).  

BiRewire supports undirected or directed graphs but not partially directed graphs, so we randomized the directed 

edges and undirected edges separately and then merged them.  For each type of permutation, we ran PCSF and TPS 

on 100 different versions of the randomized data.  Because the phosphorylation timing does not affect the protein 

prizes, we did not rerun PCSF when permuting the time points.  Instead, we reused the PCSF subnetwork from the 

original data.  The PCSF and TPS parameters for the permuted datasets were the same as for the original data.  We 

collected aggregate metrics that compare the permuted data results to the TPS network obtained using the original 

dataset (Köksal et al., 2018). 

In addition, we performed bootstrap analyses by randomly removing 10, 25, or 50% of the significant 

phosphopeptides.  For each fraction of held out data, we generated protein prizes and ran PCSF and TPS 100 times 

using the original parameters.  We again computed aggregate metrics that compare the permuted data results to the 

TPS network obtained using the original dataset (Köksal et al., 2018). 

Evaluation against pathway databases 

In order to compare our predictions against a set of manually curated pathway databases, we developed a framework 

that collects signed, directed protein-protein interactions from the BioPAX L3 and SIF formats.  Our framework 

allows us to perform a systematic comparison against reference pathways.  We extracted pathway interactions from 

multiple references represented using BioPAX L3.  The comparison against SIF networks is straightforward because 

SIF files are simply lists of pairwise protein-protein interactions. 



Extraction from pathway maps is performed in two steps.  First, we extract all proteins, complexes, and paths 

reported between these entities.  Then, we query the extracted paths for reachability between pairs of proteins, 

following rules that allow us to handle a multitude of formalisms used by different references to represent pathways 

within the BioPAX L3 format. 

Not all reference pathway maps use the same types of identifiers.  We therefore establish a name correspondence 

between the protein interaction network and all pathway maps by using protein-gene name mappings and gene 

synonyms.  In order to find entities corresponding to a protein of interest, we query pathway maps with the UniProt 

protein name and identifier, as well as the corresponding gene name and Entrez gene synonyms retrieved from 

NCBI at ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz.  This can 

introduce ambiguity in the analysis because some pathway databases use non-standard gene symbols or a single 

symbol to represent multiple genes in the same family.  For example, ABL2 is a member of KEGG’s ErbB signaling 

pathway, but we did not annotate it as a known EGFR pathway member in Figure S4 due to these gene naming 

differences.  Rather than manually adjust the gene name matching, we use a fully automated process in order to 

make unbiased claims about pathway converge in Figures S1 and S2. 

Extracting proteins, complexes, and paths between them from BioPAX L3 

In the first step, we compute all paths from a protein or complex to another protein or complex without going 

through an intermediate protein, complex or small molecule.  We explicitly handle different representations of 

interactions including catalysis, control, template reaction regulation, and complex assembly. 

A catalysis has a controller entity and a controlled conversion.  It may optionally have a catalysis direction, which 

indicates whether the conversion is catalyzed left-to-right or right-to-left.  We say that when an entity E is a 

controller of a conversion C, then the entities at one or both sides of the conversion are reachable from E (depending 

on the catalysis direction information). 

A more general interaction type than catalysis, a control has a controller entity and a controlled interaction and does 

not specify a direction for the controlled interaction.  We say that when entity E controls interaction I, both the left 

and right participants of I can be reached from E. 

A template reaction regulation expresses the regulation of a template reaction by a physical entity.  Template 

reactions only have a product, which we say is reachable by the entity controlling the regulation. 

A complex assembly has left and right participants.  If P is a left participant, then a right participant complex is 

reachable from P.  We do not use this type of path currently, with a protein start node and complex end node.  We 

instead just look for common complexes that contain two given proteins. 

Additionally, we use the reported molecular interactions to infer complex assemblies.  We say that entities E1 and 

E2 appear in a complex when they are participants in the same molecular interaction. 

Computing protein interactions from extracted paths 

Now that we have information about which complexes and which protein/complex paths exist in a resource, we can 

query the extracted paths for reachability from one protein to another. 

Interactions between proteins may be expressed either between the entities directly or indirectly through successive 

steps of complex formation.  We want to use the former when it is available because it usually provides information 

on interaction directions unambiguously.  Considering paths that have complexes at their endpoints, or even simply 

analyzing which proteins appear in the same complex is essential for mining some interactions, but only considering 

the more specific, direct interaction information results in a better analysis.  For this reason, we perform a staged 

reachability query with three different types of queries. 

In the first stage, we look for paths that have A and B at each end.  If such a path can be found for at least one 

direction, we stop the process and report the direction(s).  If an interaction cannot be found in the first stage between 

A and B, we advance to a second stage of querying, in which we search for complex-to-protein interactions from, 

for instance, C to B, where A is a member of the complex C.  Note that A might be transitively contained in C 

through another complex contained by C.  We further refine this interaction by enforcing that A must have joined 

complex C no earlier than other non-complex components.  If we can find complex assemblies that produce C, we 

ftp://ftp.ncbi.nih.gov/gene/DATA/GENE_INFO/Mammalia/Homo_sapiens.gene_info.gz


check whether A is a direct participant of the complex assembly (as opposed to having earlier formed a complex that 

is a participant in the complex C).  If no complex assemblies can be found, we check whether A is a direct 

participant of the complex C (as opposed to being a participant in a complex that is itself a participant of C). 

If neither of the above stages result in inferring a direction, we perform a third and final query, looking for a 

common complex that contains both A and B.  If there is such a complex, we infer an interaction in both directions. 

Pathway resources 

We applied our data extraction procedure to eight human pathway references, which are shown with their full names 

and identifiers when available: 

 NCI-Nature Pathway Interaction Database "EGF receptor (ErbB1) signaling pathway" 

(erbb1_receptor_proximal_pathway):  http://pid.nci.nih.gov/download.shtml  

 Reactome "Signaling by EGFR" (R-HSA-177929): 

http://www.reactome.org/ReactomeGWT/entrypoint.html 

 BioCarta "EGF signaling pathway" (h_egfPathway): http://pid.nci.nih.gov/download.shtml 

 Cancer Cell Map "EGFR1": http://www.pathwaycommons.org/pc/dbSnapshot.do?snapshot_id=8 

 KEGG "MAPK signaling pathway" (hsa04010) and "ErbB signaling pathway" (hsa04012): 

http://ipavs.cidms.org/downloads 

 Layek et al.: Manually reconstructed from Figure 4 of (Layek et al., 2011) 

 Science Signaling Database of Cell Signaling "Epidermal Growth Factor Receptor Pathway" 

(CMP_14987): Originally manually reconstructed from the image at 

http://stke.sciencemag.org/cgi/cm/stkecm;CMP_14987, which was archived in June 2015 and is no longer 

available.  The XML version is available from http://stke.sciencemag.org/about/help/cm. 

This collection of reference pathways includes: EGFR pathway maps from six popular databases (Croft et al., 2014; 

Gough, 2002; Kandasamy et al., 2010; Kanehisa et al., 2012; Nishimura, 2001; Schaefer et al., 2009); a Boolean 

circuit representation of growth factor signaling (Layek et al., 2011); and the related but more general mitogen-

activated protein kinase (MAPK) pathway from KEGG.  These resources reflect the diverse goals and biases of 

different pathway curators.  BioCarta focuses on the most essential signaling events, containing only 16 proteins.  

Conversely, Cancer Cell Map, which is part of the NetPath resource (Kandasamy et al., 2010), seeks broader 

coverage.  Its EGFR map contains 178 proteins, approaching the 202 proteins cataloged in a thorough EGFR review 

(Oda et al., 2005). 

For the yeast evaluation, we downloaded the KEGG pathway "MAPK signaling pathway” (sce04011) from 

https://www.genome.jp/kegg-bin/show_pathway?map=sce04011.  We used capDSD (Cao et al., 2014) to parse the 

XML file and Cytoscape (Shannon et al., 2003) to retain only the edges in the "High osmolarity" connected 

component of the KEGG pathway.  Finally, we exported the Cytoscape network into a SIF format for the evaluation.  

The SIF file was a multigraph, containing more than one edge for some protein pairs.  We retained the most specific 

direction and sign available for each protein pair. 

In addition, we considered an upper and lower bound when calculating the directed precision (Supplemental File 4) 

because not all KEGG pathway edges have reported directions.  Both cases consider edges that are in the KEGG 

pathway (directed or undirected) and in the TPS network with a specific predicted direction as the positive 

predictions.  For the upper bound on directed precision, the true positives are the edges for which the predicted 

direction does not conflict with the reported direction in KEGG.  For the lower bound, the true positives are the 

edges for which KEGG reports a unique direction that agrees with the TPS prediction. 

Natural language processing evaluation 

We used three NLP tools – iHOP (Hoffmann and Valencia, 2004), Chilibot (Chen and Sharp, 2004), and Literome 

(Poon et al., 2014) – to perform unbiased literature searches for previous evidence of direct interaction for the 54 

fringe pathway predictions.  Fringe predictions are interactions that are at the periphery of the canonical pathway, 

meaning one or both of the interacting proteins are members of a reference EGFR pathway map but there is no 

interaction reported.  Each NLP tool takes gene symbols as input so we mapped the UniProt identifiers in our 

predicted pathway edges to gene symbols.  For each pair of genes, the NLP tools report the sentence from a PubMed 

abstract that is believed to describe an interaction among the corresponding proteins and either the full abstract or 

http://pid.nci.nih.gov/download.shtml
http://www.reactome.org/ReactomeGWT/entrypoint.html
http://pid.nci.nih.gov/download.shtml
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the PubMed Unique Identifier (PMID), which can be used to retrieve the full abstract.  All three tools perform entity 

normalization to automatically reconcile synonyms that refer to the same gene or protein.  We did not intend to 

evaluate the quality of the NLP itself so we manually read the entire abstract to select the sentence that most 

specifically confirms or denies the predicted interaction, which is not always the sentence identified by the NLP 

tool.  Literome searches for direct interactions and indirect interactions that are mediated by an intermediate third 

protein, and we only considered the direct interactions.  For Chilibot, we considered interactive sentences but not 

parallel sentences.  We classified the degree of support for each interaction using the categories in Supplemental File 

3 and summarized the evidence by taking the most specific sentence across the three tools.  When evaluating 

interaction sign, we assessed the interaction’s impact on the target protein’s phosphorylation, not its function.  

Because some interactions may have conflicting roles in different contexts and abstracts and each NLP tool has 

unique strengths, we kept the sentence that best matched our prediction when there were multiple possibilities or 

conflicts. 

Osmotic stress evaluation 

Predicted, direct Rck2 targets in the TPS network were compared against a recent phosphoproteomics study on an 

RCK2 mutant strain that identified peptides with defective phosphorylation 5 minutes after treatment with 0.5M 

NaCl (Romanov et al., 2017).  We defined defective phosphosites as those that exhibited a wild type osmotic stress 

response and at least a 1.5-fold defect in rck2Δ compared to the wild type.  Phosphosites with a wild type osmotic 

stress response included those with at least a 2-fold increase in phosphorylation in the wild type strain after NaCl 

treatment in the Romanov et al. study and those that were not quantified in that condition by Romanov et al. but 

responded significantly to salt stress in the Kanshin et al. study (Kanshin et al., 2015).  Cdc28 targets were merged 

from two cdc28-as studies (Holt et al., 2009; Kanshin et al., 2017) using the substrate identification techniques they 

proposed.  Holt et al. required phosphopeptides to match the Cdc28 consensus sequence and a 50% decrease in 

phosphorylation.  Kanshin et al. trained a support vector machine to identify direct Cdc28 substrates.  For both Rck2 

and Cdc28, we only considered defective phosphosites that were quantified by Kanshin et al. (Kanshin et al., 2015) 

because those phosphorylated proteins were provided as input to TPS. 

Running the dynamic Bayesian network, TimeXNet, and FunChisq 

We downloaded the dynamic Bayesian network software (Hill et al., 2012) from 

http://mukherjeelab.nki.nl/DBN.html.  We constructed a network prior that indicates, for each pair of peptides in the 

time series data, whether there exists an edge corresponding to the pair in the protein-protein interaction network we 

prepared for PCSF.  We ran the method with a maximum in-degree of 2 nodes, which is the largest value that the 

DBN could handle for this dataset.  The method chose an optimal prior strength of 1.5 for inference.  Edges were 

generally assigned low probability values across the network with a maximum edge probability of 0.10967.  To 

obtain a final network of size comparable to the TPS output, we filtered the DBN predictions by a minimum 

probability value of 0.025.  We treated opposite directed predictions for the same pair of proteins as one undirected 

edge in our comparative evaluations. 

We downloaded the TimeXNet software (Patil and Nakai, 2014; Patil et al., 2013) from http://timexnet.hgc.jp/ and 

ran it with the same weighted protein-protein interaction network we prepared for PCSF.  To assign proteins to 

temporal groups, we selected the time point at which the most significant phosphorylation change occurs, 

considering all peptides that correspond to a protein.  The initial temporal group contained proteins with the most 

significant change at 2 or 4 minutes.  The intermediate group contained the 8, 16, and 32 minute proteins.  The 64 

and 128 minute proteins composed the late group.  As in PCSF, we computed node scores as − log10 𝑝𝑣𝑎𝑙𝑢𝑒.  

Following the parameter selection guidelines in (Patil et al., 2013), we ran TimeXNet using all combinations of γ1 

and γ2 from 0 to 5 (step size of 0.5).  There were no subnetworks with less than 1% unreliable edges when defining 

unreliable edges as edges with weight less than 0.5.  We instead defined unreliable edges as those with edge weight 

less than 0.3 and selected γ1 = 4.5 and γ2 = 0 as the optimal parameters.  Among the 11 subnetworks with less than 

5% unreliable edges, these parameters maximized the number of source nodes and minimized the fraction of 

unreliable edges.  We did not filter the subnetwork by node or edge flow and treated all edges as directed edges 

based on the flow direction. 

We downloaded FunChisq (Zhang and Song, 2013) and the associated data discretization tool Ckmeans.1d.dp as R 

packages.  We wrote a wrapper in Scala that uses the two packages to provide an end-to-end inference pipeline that 

accepts time series data and produces FunChisq scores (a statistic and a p-value) for every interaction.  The wrapper 

is available publicly at https://github.com/koksal/funchisq-wrapper.  We discarded time series profiles that were 
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discretized into only one level by Ckmeans.1d.dp.  We mapped the peptide-level output of FunChisq to the protein 

level, which produced duplicate protein-level edges when multiple peptides mapped to the same protein.  We 

aggregated these duplicate edges by taking the minimum p-value observed for each edge.  We filtered the edges by 

keeping those with p-value ≤ 0.01 and limited the network to 1000 edges by descending FunChisq statistic to be 

comparable in size to the other algorithms.  As for the dynamic Bayesian networks, we treated opposite directed 

predictions for the same pair of proteins as one undirected edge in our comparative evaluations. 

Contrasting TPS with related computational approaches 

Approaches for building networks from gene expression data alone (reviewed in (De Smet and Marchal, 2010)) can 

be applied to phosphoproteomic data as well.  Extensions of these methods for temporal data introduce time lags and 

search for dependencies between genes’ expression levels over time (Zoppoli et al., 2010).  Methods based on 

Granger causality (Masnadi-Shirazi et al., 2014) identify proteins whose phosphorylation predicts behavior at later 

time points and provide one type of causal model.  However, as we showed in our comparison with the dynamic 

Bayesian network (Hill et al., 2012) and FunChisq (Zhang and Song, 2013), these and other methods that rely on the 

phosphorylation data alone (Henriques et al., 2017) miss critical signaling pathway interactions because not all 

pathway members have observed phosphorylation changes. 

Algorithms based on gene and protein perturbations provide an alternative approach toward causal models.  

Transcriptional regulatory networks have been inferred from expression changes induced by gene knockouts and 

knockdowns (Anchang et al., 2009; Markowetz et al., 2007; Wang et al., 2014; Yeang et al., 2004).  Likewise, 

signaling networks have been reconstructed by stimulating a pathway and perturbing signaling nodes with kinase 

inhibitors or RNA interference.  Protein activities are observed with antibody-based assays, and pathways are 

recovered de novo (Ciaccio et al., 2015; Fröhlich et al., 2009; Kiani and Kaderali, 2014; Molinelli et al., 2013) or by 

adapting prior pathway knowledge (Morris et al., 2011).  The PHONEMeS method is unique for its ability to handle 

large-scale phosphoproteomic perturbation data (Terfve et al., 2015). 

The HPN-DREAM network inference challenge (Hill et al., 2016) spawned several new approaches for analyzing 

time series phosphorylation data.  Participants predicted signaling pathways from in silico time series data and 

temporal reverse phase protein array data for approximately 45 phosphoproteins in four breast cancer cell lines 

under various stimuli and inhibitor treatments.  In contrast, TPS focuses on the unique demands in modeling and 

scaling to global phosphoproteomic data with over one hundred thousand phosphosites that are not encountered 

when modeling only tens of proteins.  PropheticGranger (Carlin et al., 2017), the top performer in the HPN-DREAM 

experimental task, demonstrated the importance of prior knowledge in network inference and modified the standard 

Granger causality approach to assess dependencies between observed proteins.  However, PropheticGranger did not 

scale when we applied it to our EGF response data with a complete PPI network as the prior.  FunChisq (Zhang and 

Song, 2013), the top performer in the HPN-DREAM in silico task, was able to run on our data but did not perform 

well (Supplemental File 4). 

In our EGFR study, the TPS PPI subnetwork input is provided by PCSF, but other network algorithms can also 

connect phosphorylated proteins using PPI.  A related algorithm interpolates between globally optimal (Steiner tree) 

and locally optimal (shortest path) connections to different proteins (Yosef et al., 2009), and this method has been 

applied to link functional signaling proteins derived from phosphoproteomics data (Rudolph et al., 2016).  Many 

other approaches connect source and target proteins in a PPI network to identify pathways.  ResponseNet (Yeger-

Lotem et al., 2009) does so with a maximum flow formulation; SHORTEST (Silverbush and Sharan, 2014) and 

PathLinker (Ritz et al., 2016) use shortest paths; Maximum Edge Orientation (MEO) (Gitter et al., 2011) orients the 

undirected edges to produce short, directed paths.  Integer programs can express complex optimization preferences 

with multi-stage objective functions when predicting source-target connections (Chasman et al., 2014; MacGilvray 

et al., 2018).  The predicted networks from any of these methods can be used as input for temporal analysis with 

TPS. 

Among methods that integrate dynamic data and PPI networks, TPS is unique in its ability to assess and summarize 

all possible pathway structures that are consistent with the input network and the temporal constraints.  TPS also 

considers all possible temporal activations for each peptide instead of mapping proteins to temporal bins in advance 

like TimeXNet (Patil and Nakai, 2014; Patil et al., 2013).  Similarly, Budak et al. use time point-specific PCSF 

networks to map proteins to times (Budak et al., 2015), TimePath assigns genes to transcriptional phases based on 

gene expression timing (Jain et al., 2016), Khodaverdian et al. explore theoretical properties of temporal Steiner 

trees (Khodaverdian et al., 2016), and ST-Steiner allows early subnetworks to influence the structure of subsequent 



subnetworks (Norman and Cicek, 2018).  The Signaling and Dynamic Regulatory Events Miner (SDREM) models 

temporal gene expression to infer the timing of transcription factor activity, but the pathway discovery phase does 

not use any temporal information (Gitter and Bar-Joseph, 2013; Gitter et al., 2013).  Vinayagam et al. used temporal 

phosphorylation to evaluate their predicted PPI directions but did not consider dynamics when making the 

predictions (Vinayagam et al., 2011).  Time series data and interaction networks have also been combined for 

inferring protein complex dynamics (Park and Bader, 2012), pathway enrichment (Jo et al., 2016), and related 

problems reviewed in Przytycka et al. (Przytycka et al., 2010). 

The key difference between our work and other declarative computational approaches is that TPS operates on 

networks that are several orders of magnitude larger and summarizes very large solution spaces defined by sparser 

and less precise experimental data.  Model checking and symbolic reasoning have been used to verify properties of 

manually constructed biological models (Fisher and Piterman, 2014), complete partially specified pathways using 

perturbation data (Köksal et al., 2013), and synthesize gene regulatory networks directly from data (Dunn et al., 

2014; Moignard et al., 2015) (reviewed in (Fisher et al., 2014)).  In addition, other types of declarative approaches, 

such as integer programming (Budak et al., 2015; Chasman et al., 2014; Jain et al., 2016; Ourfali et al., 2007; Sharan 

and Karp, 2013; Silverbush and Sharan, 2014) and answer set programming (Guziolowski et al., 2013), have been 

applied to biological pathway analysis.  The TPS model summarization strategy, which makes it applicable to 

comprehensive signaling networks containing more than a hundred thousand edges and phosphosites, sets it apart 

from these related methods (Figure S6). 

Random data generation for scalability analysis 

In order to evaluate the ability of TPS to scale to large datasets, we randomly generated graphs, time course 

phosphorylation profiles, and protein-peptide maps of increasing size, up to 128,000 edges.  We tuned the random 

data generation to approximate the following characteristics of our main case study: median node degree, median 

number of phosphosites per node, and median number of time points that exhibit a statistically significant change 

from the baseline.  Both the number of phosphosites per node and the number of significant changes per time course 

were sampled from Poisson distributions. 

Visualization 

Network figures were created with Cytoscape version 3.2.0 (Shannon et al., 2003).  Most other images were 

generated using the matplotlib (Hunter, 2007), matplotlib-venn, py-upset, and Seaborn Python libraries.  The py-

upset package (https://github.com/ImSoErgodic/py-upset) is a Python port of the UpSet technique (Lex et al., 2014). 
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