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Abstract: Significant evidence suggests protein-level or metabolic control is widespread and important 

in metabolic networks. However, the biophysical interactions responsible for flux control at the metabolic 

level are not nearly as well-characterized as those which are responsible for control at other biological 

levels, such as transcriptional regulation. This knowledge gap is a limiting factor in the application of 

engineered protein-level regulation in Metabolic Engineering for the rational and sensitive control of 

pathway flux. Here we apply an in silico dynamic numerical optimization approach to a representative 

branched pathway to understand how engineered allosteric regulation could be used to control flux. We 

consider inhibition sensitivity as a hypothetical tunable parameter to demonstrate that integration of 

allosteric and transcriptional regulation is necessary to stably achieve arbitrary targets for both 

downstream metabolite concentrations. We further show that the steady-state ratio of these metabolites 

can be controlled by tuning the sensitivity of allostery at the branch point. Finally, we demonstrate that 

system dynamics dictate which type of engineered control is optimal. This work has implications for the 

co-optimization of transcriptional and allosteric regulatory systems in metabolic networks and provides a 

framework for the design of allosteric regulation in engineered metabolisms.  
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1. INTRODUCTION 

Metabolic Engineering seeks to replace traditional means of 

chemical production with microbial chemical factories 

through genome modelling and manipulation. Typically, this 

is achieved through the deletion of metabolic pathways 

and/or insertion of heterologous pathway genes to direct 

metabolic flux toward valuable native and non-native 

products (Woolston, et al 2013). A wide range of 

optimization techniques at various scales have been explored 

by metabolic engineers. This study is concerned with 

enabling tools dynamic engineering of flux. Typically 

dynamic control involves engineered regulation of flux 

through the creation of sensor-reporter gene networks which 

modulate expression of a target enzyme as a function of the 

intracellular concentration of a downstream metabolite or 

exogenous chemical (Venayak, et al 2015). The widespread 

use of such gene networks has been facilitated by the rapid 

growth of Synthetic Biology and the concomitant explosion 

in the tools available for the efficient engineering of genetic 

systems.  

The field of Protein Engineering has seen similar, though 

necessarily slower advances in recent years. Protein design, 

unlike gene network design, is limited largely by the 

computational power available to engineers (Marcheschi, et 

al 2013). Despite this, de novo engineered proteins have been 

applied in at least two significant Metabolic Engineering 

projects (Leonard, et al 2010) (Siegel, et al 2015). 

Additionally, several methods for the introduction of 

allosteric control of activity into unregulated proteins have 

been established and validated (Ostermeier, 2005) (Taylor, et 

al 2016). These techniques have primarily focused on 

furthering the structural and evolutionary understanding of 

the phenomenon of allostery (Lindsley and Rutter, 2007), but 

we suggest that they could be applied in the dynamic control 

of metabolism analogously to gene networks. In this scenario, 

an engineered enzyme would act as both sensor and regulator 

to control metabolic flux.  

A significant and growing body of work has characterized the 

role of metabolic-level control of flux for various network 

topologies. Metabolic control analysis (MCA) in particular 

has been useful to demonstrate the significance of metabolic 

control in regulating pathway flux (Wang, et al 2004) (Fell 

and Sauro, 1985). Other modelling techniques have been 

used to demonstrate both the theoretical interactions of 

metabolic and transcriptional control (Oyarzun, et al 2007) 

and to recapitulate these effects as observed in a model 

biological system (Zaslaver, et al 2004). From this work, it is 

clear that metabolic changes are significant drivers of flux 

changes (Gerosa, et al 2015) and therefore that manipulation 

at the metabolic-level could be used to optimize engineered 

metabolisms.  

However, the application of these conclusions to the rational 

design of metabolic control is relatively difficult within these 
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modelling frameworks, as they describe potentially tunable 

biophysical interactions in abstract mathematical terms only. 

For example, feedback inhibition of enzyme activity is 

characterized via elasticities in MCA (Fell and Sauro 1985), 

which are related to, but have no concrete connection to 

effector binding strength and/or mode of action – i.e. enzyme 

parameters which are rapidly becoming tunable as Protein 

Engineering matures. Additionally, many of these approaches 

rely on linearization for convenience, thereby ignoring the 

inherently and potentially useful non-linear nature of enzyme 

inhibition (Wang, et al 2004). 

We therefore build from this body of work by numerically 

simulating a branched pathway with explicitly-defined, non-

linear, effector-enzyme relationships. Our intention with this 

approach is to directly link a tunable, biophysical interaction 

with the flux effects of such an interaction so that it can be 

optimized. We selected a branching pathway because this is 

highly relevant for Metabolic Engineering, which is 

concerned with diverting flux at target nodes toward 

economically productive pathways. In this topology, 

metabolic control interactions are most efficient at the entry 

points to either downstream metabolic branch (Savageau, 

1974), so we place the target engineered inhibition at the 

entry point to one of the branches. We begin by optimizing 

the global transcriptional control of our system under 

different sensitivities of allosteric regulation to show that 

allostery is required for optimal partitioning of flux among 

the downstream branches to reach relatively arbitrary targets 

for both terminal metabolites. Then we simulate the system 

under three different control regimes—transcriptional only, 

allosteric only, and integrated—to demonstrate that allosteric 

control of enzyme activity alone can effectively partition flux 

among the downstream branches, but that the optimal control 

regime depends strongly on system dynamics and the target 

steady-state ratio of terminal metabolites in the system. 

2. SYSTEM DESCRIPTION 

 

Fig 1. Model system. S0 enters the system at constant flux v0 

and is converted into either terminal metabolite M1 or M2 in a 

step-wise fashion via the action of enzymes Ei. Terminal 

metabolites leave the system at rates proportional to their 

concentrations. Regulatory interactions include 

transcriptional feedback inhibition of enzymes 1, 3, and 5 by 

metabolite M2, and enzymes 2 and 4 by metabolite M1. In 

scenarios in which allosteric inhibition is considered, M2 

additionally inhibits the activity of E3 directly.  

In our system (Fig. 1), substrate S0 enters at a constant flux 

ν0. It is converted to metabolite S1 which can enter either of 

two branching pathways with terminal metabolites M1 and 

M2. Five enzymes (Ei) catalyse the conversion of S0 to either 

terminal metabolite. With the exception of E3, their activity 

was modelled using standard Michaelis-Menten kinetics. E3 

activity was modelled with Michaelis-Menten kinetics with 

uncompetitive inhibition. The terminal metabolites leave the 

system at a rate proportional to their concentrations and 

enzyme expression is controlled by the concentration of 

either terminal metabolite in a dose-responsive way.                  

The kinetic equations describing this system are as follows: 

    (1) 

 (2) 

   (3) 

  (4) 

   (5) 

   (6) 

   (7) 

Where R is the fraction of repressor protein (total 

concentration assumed constant) bound to the control signal: 

   (8) 

In (8) j = 1 for i = 2, 4 and j = 2 for i = 1, 3, 5.  

Here γ is the rate constant for enzyme degradation and 

terminal metabolite flux out of the system. We describe it as 

the “turnover rate constant”. The use of first-order kinetics 

for both processes assumes that they are associated with 

growth and therefore that cell division is the dominant 

process by which both enzymes and the terminal metabolites 

leave the system. This allows for the examination of control 

dynamics relative to growth rate, as in Fig 5.  

Uncompetitive allosteric inhibition (“allostery”) in (2) and (4) 

is described by 

                                  (9) 

This assumes that the fraction of inhibited enzyme reaches 

equilibrium instantaneously relative to the timescale of 

transcriptional repression. In (9), KI is the inhibition constant 

and it is inversely proportional to the sensitivity of inhibition. 
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In the limit of large KI, (9) reduces to unity; this is the case in 

which allostery has no effect on enzyme activity. We 

therefore introduce IS, the inhibition sensitivity: 

   (10) 

As IS decreases, α decreases to 1 and the influence of 

inhibition on enzyme activity is minimized. Therefore, IS is 

directly proportional to the sensitivity of inhibition of enzyme 

activity.  

In the native case, this control regime is similar to aromatic 

amino acid biosynthesis which has both global transcriptional 

control and allosteric control at entry points and branch 

points in the pathway (Maeda and Dudareva 2012). In 

engineered cases, it allows for the optimization of the design 

parameter KI. In scenarios where engineered transcriptional 

control of E3 expression was simulated, the influence of M2 

was maximized by assuming that it binds directly to the gene 

operator sequence to repress expression: 

  (11) 

This represents the ideal scenario for engineered 

transcriptional control in which the transcriptional sensor is 

also the regulator. In all cases the system has 4 extrinsic, 

user-defined parameters which determine its time and 

concentration scales. These parameters were kept constant for 

all simulations, unless otherwise indicated. They are outlined 

Table 1. 

Table 1. Extrinsic system parameters. Sources for reasonable 

parameter estimates are provided except for input flux, which 

was set at a value which allowed for stable system operation. 

Parameter Value Units Source 

kcat 100 min-1 Bar-Even, et al, 2011 

Km 0.1 mM Bar-Even, et al, 2011 

v0 0.005 mM·min-1 N/A 

γ 0.07 min-1 Anesiadis, et al, 2008 

3. METHODS 

3.1  Native Optimization 

To understand the interaction between allosteric control and 

transcriptional optimization the metabolic cost of the system, 

C, was minimized to find optimal transcription kinetic 

parameters (βi, ki) over a wide range of inhibition sensitivities 

(1 – 10000 mM-1).  

 (12) 

We modified the cost equation used by Zaslaver et al with the 

addition of a second metabolite cost to produce (12). This is 

necessary because of the branching in our system. The first 

term accounts for the cost of producing enzymes (“enzyme 

cost”), while the sum of the second and third terms 

characterize the cost of deviating from the target value of 

either terminal metabolite (“metabolite cost”). M1goal and 

M2goal were set to 0.025 mM for each optimization based on 

measure steady-state concentrations of aromatic amino acids 

in E coli (Bennet, et al, 2009). The parameter a in (12) 

provides the fractional cost of enzymes in the system. For 

example, we chose a = 0.001 to make the enzyme cost one 

thousandth of the metabolite cost. Sensitivity analysis on a is 

not provided here due to space constraints, but for our system 

this parameter can be increased 100x from the given value 

with no significant effects on results.   

3.2  Engineered Systems Optimization 

The goal of engineering this system would not be 

maintenance of a specific intracellular level of either terminal 

metabolite, as it might be for normal cellular functioning. 

Rather, metabolic engineers are concerned with maximizing 

the amount of one terminal metabolite—M1 in this case. For 

this reason, the cost function was redefined as follows for 

simulations of engineered systems: 

   (13) 

This allows for maximal flux through the pathway with 

maintenance of a target terminal metabolite ratio.  

Furthermore, since an engineered system exists in a native 

transcriptional background, one set of transcriptional 

parameters was selected for all optimizations of the 

engineered systems. The transcriptional context used for 

optimization was selected from optimization results for the 

native system. Simulation of this transcriptional background 

was performed to ensure that the system reached a steady-

state terminal metabolite ratio of one without any changes to 

control parameters. The cost function was minimized to find 

KI in the allostery-only regime, β3 in the transcriptional 

control regime, or both in the integrated regime for a wide 

range of target M1/M2 ratios. In all optimizations, T was set 

to the time required to reach steady state defined by γ.  

4. RESULTS 

4.1  Native System 

Optimization results for the native system are presented in 

Fig 2. We present the ratio of terminal metabolites for brevity 

in this figure. M1 reached the target value of 0.025 mM in 

each optimization over the given timeframe, so a ratio below 

one indicates that the M2 target was undershot, while a ratio 

of one indicates that both targets were stably reached.  

The addition of allosteric control to the native system 

changed the transcriptional optimization landscape in two 

significant ways. First, it allowed the system to reach 

independent concentration targets for both terminal 
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metabolites. Without significant protein-level flux control at 

the entry into the M2 branch, transcription alone was not able 

to perfectly balance the terminal metabolite ratios according 

to the goal values. Fig. 2 demonstrates this with three distinct 

regions of control influence. For 1 mM-1 ≤ IS < 10 mM-1, 

transcription dominates and the terminal ratio is significantly 

undershot. On 10 mM-1 ≤ IS ≤ 200 mM-1, control is mixed 

and the ratio approaches the target value of 1 as the influence 

of allostery increases. The target ratio is stably reached for IS 

> 200 mM-1 and therefore it is only for this level of inhibition 

sensitivity that the system can manage two independent 

optimal metabolite concentrations.  

 

Fig. 2. System performance as a function of inhibition sensitivity. 

Total system costs, calculated with (12) and the ratio of terminal 

metabolites for a large range of sensitivity values are presented. 

When IS ≤ 10, sensitivity is too low to have significant system 

effects. Conversely, IS ≥ 1000 represents ultrasensitive control in 

which control effects begin to saturate. The optimal control region is 

shaded. 

The second major effect that the addition of allosteric control 

had on the system was a significant reduction in the 

metabolic cost over the same range of sensitivity. This is 

intuitive, since the majority of the total cost is defined by the 

metabolite cost. Thus, if the system can reach the target 

metabolite concentrations quickly, the cost will generally be 

minimized. In fact, the enzyme cost remained relatively 

constant over nearly the full range of inhibition sensitivity. 

However, at extreme sensitivities it began to play a larger 

role in the total cost; it is responsible for the increasing total 

cost for IS > 1000 mM-1 in Fig. 2. Since the activity of the 

regulated enzyme has only an indirect effect on its own 

expression, and since high sensitivities cause a large decrease 

in activity even for low concentrations of the inhibitor, the 

system must express the regulated enzyme at much higher 

levels in order to reach the target terminal metabolite values 

when allosteric regulation is highly sensitive.  

The combined effects of allostery on the terminal metabolite 

ratio and system cost define an optimum region of control 

wherein the cost is minimized. This optimal region occurs 

when IS is on the range of 200 mM-1 – 1000 mM-1 (shaded 

region in Fig. 2), and corresponds to an 83%-96% reduction 

in E3 activity at steady-state.  

4.2  Engineered Systems  

Control parameters were optimized for three engineered 

regulatory regimes – allostery-only, transcriptional-only, and 

integrated – at the branch point of our system for a range of 

target M1/M2 ratios (Fig. 3). All three control regimes could 

be feasibly optimized to produce target ratios of 1-10. 

However, the allostery-only regime could not robustly 

produce ratios lower than 1 whereas the transcriptional 

control regime has a minimal feasible ratio of 0.4, beyond 

which system cost increased. Integration of allostery with 

transcription further expanded this feasible range by allowing 

for ratios as low as 0.06.  

 

Fig. 3. Metabolic costs of engineered control for three control 

regimes over a range of target terminal metabolite ratios. The 

terminal metabolite ratio of the system is the design objective and 

cost characterizes both how quickly the system reaches the target 

and the enzyme burden required to do so. Parameters for each 

regime were optimized to produce a given target ratio and the 

metabolic cost of control was calculated using (13). Background 

transcriptional parameters were constant across regimes to simulate 

the case in which an engineered control system is implemented in a 

native transcriptional background.  

In addition to its limited operational range, the allostery-only 

regime has the largest cost for all target ratio, i.e. this control 

regime takes the longest time to reach the target steady-state 

ratio. Our initial hypothesis was that allostery-only would be 

the fastest control tu[e and therefore that it would have the 

lowest associated cost in this optimization. However, the 

demand for terminal metabolite ratios beyond one is only 

achievable with highly sensitive allostery in this scenario. 

Since the control signal (M2) has a relatively long half-life 

here, the system takes a proportionately long time to reach 

the steady-state target when allostery is the only control 

system. However, this changes as a function of the turnover 

rate constant (see Fig. 5). 

The transcriptional and integrated regimes have similar costs 

for ratios up to ~2.5. Beyond this point, the cost associated 

with the integrated system is significantly smaller than that of 

the transcriptionally-regulated system. The gap in cost 

between the two systems widens as the ratio increases, 

suggesting that integration is essential to minimize the cost of 

large terminal metabolite ratios. Interestingly, the optimal 

transcription parameter, β, is similar for each target ratio in 

2016 IFAC FOSBE
October 9-12, 2016. Magdeburg, Germany

4



 Christian K. Euler et al. / IFAC-PapersOnLine 49-26 (2016) 165–170 169 

 

 

 

 

metabolites. Without significant protein-level flux control at 

the entry into the M2 branch, transcription alone was not able 

to perfectly balance the terminal metabolite ratios according 

to the goal values. Fig. 2 demonstrates this with three distinct 

regions of control influence. For 1 mM-1 ≤ IS < 10 mM-1, 

transcription dominates and the terminal ratio is significantly 

undershot. On 10 mM-1 ≤ IS ≤ 200 mM-1, control is mixed 

and the ratio approaches the target value of 1 as the influence 

of allostery increases. The target ratio is stably reached for IS 

> 200 mM-1 and therefore it is only for this level of inhibition 

sensitivity that the system can manage two independent 

optimal metabolite concentrations.  

 

Fig. 2. System performance as a function of inhibition sensitivity. 

Total system costs, calculated with (12) and the ratio of terminal 

metabolites for a large range of sensitivity values are presented. 

When IS ≤ 10, sensitivity is too low to have significant system 

effects. Conversely, IS ≥ 1000 represents ultrasensitive control in 

which control effects begin to saturate. The optimal control region is 

shaded. 

The second major effect that the addition of allosteric control 

had on the system was a significant reduction in the 

metabolic cost over the same range of sensitivity. This is 

intuitive, since the majority of the total cost is defined by the 

metabolite cost. Thus, if the system can reach the target 

metabolite concentrations quickly, the cost will generally be 

minimized. In fact, the enzyme cost remained relatively 

constant over nearly the full range of inhibition sensitivity. 

However, at extreme sensitivities it began to play a larger 

role in the total cost; it is responsible for the increasing total 

cost for IS > 1000 mM-1 in Fig. 2. Since the activity of the 

regulated enzyme has only an indirect effect on its own 

expression, and since high sensitivities cause a large decrease 

in activity even for low concentrations of the inhibitor, the 

system must express the regulated enzyme at much higher 

levels in order to reach the target terminal metabolite values 

when allosteric regulation is highly sensitive.  

The combined effects of allostery on the terminal metabolite 

ratio and system cost define an optimum region of control 

wherein the cost is minimized. This optimal region occurs 

when IS is on the range of 200 mM-1 – 1000 mM-1 (shaded 

region in Fig. 2), and corresponds to an 83%-96% reduction 

in E3 activity at steady-state.  

4.2  Engineered Systems  

Control parameters were optimized for three engineered 

regulatory regimes – allostery-only, transcriptional-only, and 

integrated – at the branch point of our system for a range of 

target M1/M2 ratios (Fig. 3). All three control regimes could 

be feasibly optimized to produce target ratios of 1-10. 

However, the allostery-only regime could not robustly 

produce ratios lower than 1 whereas the transcriptional 

control regime has a minimal feasible ratio of 0.4, beyond 

which system cost increased. Integration of allostery with 

transcription further expanded this feasible range by allowing 

for ratios as low as 0.06.  

 

Fig. 3. Metabolic costs of engineered control for three control 

regimes over a range of target terminal metabolite ratios. The 

terminal metabolite ratio of the system is the design objective and 

cost characterizes both how quickly the system reaches the target 

and the enzyme burden required to do so. Parameters for each 

regime were optimized to produce a given target ratio and the 

metabolic cost of control was calculated using (13). Background 

transcriptional parameters were constant across regimes to simulate 

the case in which an engineered control system is implemented in a 

native transcriptional background.  

In addition to its limited operational range, the allostery-only 

regime has the largest cost for all target ratio, i.e. this control 

regime takes the longest time to reach the target steady-state 

ratio. Our initial hypothesis was that allostery-only would be 

the fastest control tu[e and therefore that it would have the 

lowest associated cost in this optimization. However, the 

demand for terminal metabolite ratios beyond one is only 

achievable with highly sensitive allostery in this scenario. 

Since the control signal (M2) has a relatively long half-life 

here, the system takes a proportionately long time to reach 

the steady-state target when allostery is the only control 

system. However, this changes as a function of the turnover 

rate constant (see Fig. 5). 

The transcriptional and integrated regimes have similar costs 

for ratios up to ~2.5. Beyond this point, the cost associated 

with the integrated system is significantly smaller than that of 

the transcriptionally-regulated system. The gap in cost 

between the two systems widens as the ratio increases, 

suggesting that integration is essential to minimize the cost of 

large terminal metabolite ratios. Interestingly, the optimal 

transcription parameter, β, is similar for each target ratio in 

2016 IFAC FOSBE
October 9-12, 2016. Magdeburg, Germany

4

 

 

 

 

 

the transcriptional and integrated regimes. As a result, the 

enzyme costs of each system are approximately the same. 

The cost reduction in the integrated system relative to the 

transcriptionally-regulated system therefore comes from the 

metabolite cost alone. This is intuitive, as allostery is 

expected to reduce time to steady-state in the integrated 

system relative to the transcriptionally-regulated regime so 

long as the required sensitivity for allostery is not too high 

(as in the allostery-only case). The effect of this reduction is 

most significant for very large or very small target ratios. 

This would suggest that integration of allosteric and 

transcriptional regulation is the optimal approach for fine-

tuning branched flux distribution. 

The increase in operational range in the integrated system 

relative to transcription-only can be explained by the sharing 

of control burden across regulatory systems. This is 

demonstrated in Fig 4: when transcription is paired with 

allostery, the sensitivity of allosteric regulation required to 

achieve a given terminal metabolite ratio is reduced by up to 

two orders of magnitude. For example, in the allostery-only 

regime, a sensitivity of 526 mM-1 is required to reach a target 

ratio of five. For the same ratio, the integrated system only 

requires a sensitivity of 8 mM-1. Therefore, a significant 

portion of the flux distribution control is provided by 

transcriptional regulation and as a result, less sensitive 

allosteric regulation is required for fine-tuning. A broader 

range of target values is thus possible within the limits of 

sensitivity for allostery in the integrated system. The high 

sensitivity required for optimal allostery-only control also 

explains why it has the largest cost for all target ratios: highly 

sensitive allosteric control is also highly damped, so while it 

effectively partitions flux, it also takes longer to reach a 

target M2 concentration and therefore overshoots the target 

ratio for a significant portion of the time to steady 

state.

Fig. 4. Inhibition sensitivity required to reach a range of target 

terminal metabolite ratios in each of the two regimes which use 

allostery. As in Fig. 3, the ratio of metabolite concentrations is the 

design target. The sensitivity required to reach the given target can 

be predicted for either control system; dashed lines indicate the 

sensitivities required to reach a target ratio of 5 for each regime, for 

example.  

Integration allows the system to perform with the best of both 

control regimes – it expands the operational range to at least 

that of a transcriptional controller, but reduces cost relative to 

transcription by allowing the system to more rapidly achieve 

the target terminal metabolite ratio. 

In each of these optimizations the overall timeframe of the 

system, defined by the output flux, is constant. We 

hypothesized that the system timeframe could influence the 

operation of the proposed control regimes since there is a 

significant difference in the timeframe over which they 

respond to control signals. A faster system should favour 

faster control and vice versa. We therefore expected allostery 

to play a more significant role for large output fluxes of the 

control signals – the terminal metabolites. To test this, we 

optimized the control regimes for a target ratio of 1 for a 

range of turnover rate constants (γ) for the terminal 

metabolites.  

 

Fig. 5. System costs for each control regime as a function of 

terminal metabolite turnover rates for a target terminal metabolite 

ratio of 1. As the turnover rate constant increases, the terminal 

metabolites leave the system faster and it reaches steady state more 

rapidly as a result. The dashed line indicates the rate constant used 

in optimizations of the engineered control regimes. 

There are three distinct regions in Fig 5. For small turnover 

constants (< 0.1 min-1), the effect of transcriptional control 

dominates as both the transcriptional and integrated regimes 

minimize cost in this region. For moderate turnovers (0.1 – 

5.9 min-1), allostery begins to play a more significant role, but 

integration minimizes cost. For very large turnover constants 

(≥ 5.9 min-1), allostery plays a significant role, and 

transcriptional regulation appears to cause increased costs. As 

predicted, faster systems require faster control regimes. 

However, the optimal performance of the integrated regime 

for moderate timescales is somewhat unexpected and 

suggests that there is a range of system speeds for which both 

types of control are necessary for optimal maintenance of a 

metabolic target.  
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5.  DISCUSSION 

We have recapitulated two significant findings here. First, 

that integration of transcriptional and allosteric control in an 

engineered system allows for optimal performance in terms 

of operational range and maintenance of a downstream 

metabolite concentration (Oyarzun and Chaves, 2011). 

Second, that system speed dictates which type of metabolic 

control is optimal to achieve a given target (Chubukov, et al 

2014). Broadly-speaking, these results are significant for the 

current understanding of metabolic regulation. They support 

the notion that our models of metabolism are incomplete 

without quantification of the interaction between regulatory 

systems and/or consideration of system dynamics. We have 

demonstrated here that both of these elements can play 

significant roles in the direction of flux in an irreversible, 

branched pathway. In addition, our results suggest that 

metabolic control – allostery in particular – may be necessary 

to balance metabolite pools. We suggest that this is especially 

true in fast systems and that this hypothesis deserves further 

treatment in future work. 

To this body of knowledge, we have added a new design 

approach to applying engineered proteins in metabolism by 

treating a potentially tunable biophysical interaction – 

inhibitor binding – as a design parameter for the rational, 

metabolic control of flux partitioning. While previous 

analyses have demonstrated that flux partitioning is 

significantly controlled at the metabolic level in similar 

branching pathways, we have shown here that it is possible to 

rationally control this partitioning by engineering just two 

system parameters and that for a wide range of system speeds 

integration of control types is likely optimal.  

However, two major caveats to our work exist. First, all of 

the results we report here are topology-dependent, which is to 

say that they are only relevant to control of flux partitioning 

across a branching pathway. Second, our analyses are 

dependent on strictly irreversible kinetics. MCA has been 

previously used to demonstrate that the addition of 

reversibility in one of the arms of a branching pathway can 

significantly change the metabolic control of flux partitioning 

through the system (Wang, et al 2004). Future work will 

characterize the effect of reversibility on the results we 

present here to make this approach more generalizable. 
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