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Every good regulator of a system must be a model 
of that system? 

ROGER C. CONANT 
Department of Information Engineering. University of Illinois, 
Box 4348, Chicago, Illinois, 60680, U.S.A. 

and W. ROSS ASHBY 
Riological Compntcrs Laboratory, University of Illinois, 
Urbana, :Illinois 61801, U.S.A.1 

[Rcccived 3 Jnnc 19701 

Tht: design of a complex regulator often includes the making of a rnodel of the system 
to  be regulatcrl. The making of such a model has hitherto heen regarded as optional, 
as mcrcly one of many possiblc ways. 

In this paper a t,heorcm is presontcd which shows, under very broad conditions, 
that any regulator that  is maximally both successful and simplo n~trst  bc isomorphic 
with thc system being rcgolated. (The exact assumptions arc given.) Naking a 
model is t,hus ncccssnry. 

The t,heorern has the interesting corollary bhat the living brain, so far a s  it is to ha 
successful and efficient as a regulator for survival, ~ n t ~ s l .  proceed, in learning, by the 
formation o f  a motlcl (or motlels) of its environrner~t. 

1. Introduction 
Today, as a step towards the control of complex dynamic systems, models 

are being osed ubicpitously. Being modelled, for instance, are the air traffic 
flows around New York, the endocrine balances of the pregnant sheep, and the 
flows of money among the banking centres. 

So far, these models have been made mostly with the idea tha t  the model 
might help, but  the possibility remained that  the eybernetician (or the Sponsor) 
might think tha t  some other way was better, and that  making a model (whether 
digitid, analogue, niathematical, or other) was a waste of time. Recent work 
(Conant I!Ni9), however, has suggested tha t  the relation between regulation a.nd 
modelling might be much closer, tha t  modelling might in fact be a necessary 
part of regulation. I n  this article we address ourselves to  this question. 

The nnsnrer is likely to  be of interest in several ways. First, there is the 
would-be designer of a regulator (of traftic round an  airport say) who is building, 
as a first stage, u, model of the flows and other events around the a,irport. I f  
making a model is necessury, he niay proceed relieved of the nagging fear tha t  
a t  any moment his work will be judged useless. Similarly, before any design is 
started, the question : How shall we start ? r n q  be answered by : A model 
will be nceded ; let's build one. 

t Comrnunicatcd by Dr. \I7. Ross Ashby. This work was in part supported by 
thc Air :Force Office of Scientific Research under Grunt AF-OSR 70-1865. 
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Quite another way in which the answer would be of interest is in the brain 
and its relation to behaviour. Thc suggestion has been made many times that 
perhqx the brain operates by building a model (or models) of its environment ; 
but the suggestion has (so far as we know) been offered only as a possibility. 
A proof that model-making is necessary would give neurophysiology a 
thcoretical basis, and would predict modes of brain operation that the experi- 
mcnter could seek. The proof would tell us what the brain, as a complex 
regulator for its owner's survival, must do. We could have the basis for a 
thcoretical neurology. 

'rhe title will already have told this paper's conclusion, but to i t  some 
qualifications are essential. To make these clear, and to avoid vaguenesses 
m c l  ambiguities (only too ready to occur in a p p e r  with our range of subject) 
wc propose to consider exactly what is required for the proof, and just how 
the general idens of regulation, model, and system are to be made both rigorous 
and objective. 

2. Regulation 
Several approaches are possible. Perhaps the most general is that given 

by Sommerhoff (1050) who specifies five variables (each a vector or n-tuple 
pcrlialx3) that must be identified by the part they play in the whole process. 

( I )  Them is the total set Z of events that may occur, the regulated and the 
unrcgulatecl ; e.g. all the possible events a t  an airport, good and bad. (Set Z 
in Ashby's (1967) reformulation in terms of set theory.) 

(3) The set (2, a sub-sct of %, consisting of the ' good ' events, those ensured 
by effective regulation. 

(3) The set I t  of events in the regulator R ; (e.g. in the control tower). 
I We have found clarity helped by distinguishing the regulator as an object from 
the set of events, the values of the variables that compose the regulator. Here 
wc usc italic and Roman capitals respectively.] 

(4) The set S of events in tho rest of the system S (e.g. positions of aircraft, 
amounts of fuel left in their tanks) [with italic and Roman capitals similarly]. 

(5) The sct D of primary disturbers (Sommerhoff's ' coenetic ' variable) ; 
those that, by causing the events in the system S, tend to drive the outcotnes 
out of G ; (c.g. snow, varying demands, mechanical emergencies). 

(Figure 1 may help to clarify the relations, but the arrows are to be under- 
stood for the moment as merely suggestive.) A typical act of regulation 
would be given by a hunter firing a t  a pheasant that flies past. D would 
consist of all those factors that introduce disturbance by the bird's coming 
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sometimes a t  one angle, sometimes another; by  the hunter being, a t  the 
moment, in various postures ; by the local wind blowing in various directions ; 
by the lighting being from various directions. S consists of all those variables 
concerned in the dynamics of bird and gun other than those in the hunter's 
brain. R would be those variables in his brain. G would be the set of events 
in which shot does hit bird. R is now a 'good regulator ' (is achieving 
' regulation') if and only if, for all values of D, R is so related t o  S that  their 
interaction gives an event in G. 

This formulation has withstood 20 years' scrutiny and undoubtedly covers 
the great majority of cases of accepted regulation. That i t  is also rigorous 
may be shown (Ashby 1967) by the fact tha t  if we represent the three mappings 
by khich each value (fig. 1 )  evokes the next : 

then ' R is a good regulator (for goal G, given ID, etc., 4, and 4 )  ' is equivalent 
to 

to which we must add the obvious condition tha t  

' t o  ensure tha t  p is an actual mapping, and not, say, the empty set ! (We 
represent composition by adjacency, by a dot, or by parentheses according to 
which best gives the meaning.) 

It should be noticed that  in this formulation there is no restriction to 
linearity, to continuity, or even to the existence of a metric for the sets, though 
these are in no way excluded. The variables, too, may be partly functions 
of earlier real time ; so the formulation is equally valid for regulations that  
involve ' memory ', provided the sets D; etc., are defined suitably. 

Any concept of ' regulation ' must include such entities as the regulator 
R, the regulated system S ,  and the set of possible outcomes Z. Sometimes, 
however, the criterion of success is not whether the outcome, after each 
interaction of S and R, is within a goal-set G, but is whether the outcomes, on 
some numerical scale, have a root-mean-square sufficiently small. 

A third criterion for success is t o  consider whether the entropy H ( Z )  is 
sufficiently small. When Z can be measured on an additive scale they tend 
t o  he similar : complete the constancy of outcome u H ( Z )  =0  o r.m.s. = 0,  
(though the n la the tk ic ian  can devise examples to show that  they are 
essentially independent). But  the entropy measure of scatter has the ad- 
vantage tha t  it-can be applied when the outcome can only be classified, not 
measured (e.g. species of fish caught in trawling, amino-acid chain produced by 
a ribosome.) In  this paper we shall use the last measure, H(Z), and we define 
'successful regulation' as equivalent to ' H(Z) is minimal '. 



3. Error-, and cause-, controlled regulation 
' . l h  reader may be wondering why error-controlled regnhtion has been 

ornittcti, but there has been no omission. Everything said so far is equally 
true of this case ; for if the cause-effect linkages are as in fig. 2 

Pig. 2 

It is still receiving information about :IYs values, as in fig. 1: but  is receiving i t  
aftcr a coding through S.  The rni1,tter has been discussed fully by Conant 
( I ! ! )  '.lYrere he showed tha t  the general formulation of fig. I (which repre- 
scnts only tha t  12 must reccive information from ID by some route) falls into two 
essentially distinct classes according to whether the flow of information from 
:I) to % is conserved or lossy. Regulation by error-control is essentially 
infot.tn&tion-cullserving., and the entropy of % cannot fall to  zero (there must be 
some ~midnnl  vi~riation). When, however, the regulator R draws its informa- 
tion directly from :I) ( the cause of the disturbance) there need be no residual 
vnrii~tion : the regulation may, in principle, be made perfect. 

The distinction may be illustmted by a simple esa,mple. The cow is homeo- 
static for blood-tcmpcrature, nnd in its brain is an error-controlled centre that,  
if the blood-temperature falls, increases the generation of heat in the muscles 
m d  liver-but thc blood-temperature must fa11 first. If, however, a sensitive 
tempcrnt~~re-recorder be inserted in the brain and then a stream of ice-cold 
air driven past the animd,  the tempertzture rises without a,ny preliminary fall. 
The error-controlled reflex acts, in fact, only as reserve : ordinarily, the 
nervous system senses, a t  the skin, tha t  the cause of n f d  has occurred, and 

, . 
reacts to regulate before the ' e r ro r '  actually occurs. Error-controlled 
regulntion is in fact a. primitive and demonstritbly inferior method of regulation. 
:It is inferior bcci~use with it the entropy of the outcomes % cannot be reduced 
to  zero ; its success can only be partial. The regulations used by the higher 
organisms evolve progressively to types more effective in using information 
about the cnnses (a t  7)) as the source and determiner of their regulatory 
actions. .From here on, in this paper, we shall consider ' regulation ' of this more 
rrdva~aced, cc~use-c01~6,oller1 type (though much of what we say will still be true 
o'f the crror-controlletl.l 

4. Models 
Ilefining ' regulation ', as we have seen, is easy in tha t  one is led rapidly 

to one of a few forms, closely related and easily distinguished in practical use. 
!Che at tempt to  define a ' model ', however, leads to  no such focus. \Ve shall 
obti~in n definition suitable for this paper, but first let us notice what happens 
when one attempts precision. We can start with such an unexceptionable 
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' model ' as a table-top replica of Chartres cathedral. The transformation is 
of the type, in three dimensions : 

y, = kz, 
yz = kx, 
y3 = kx3 

with k about :Hilt  this example, so clear and simple, can be modified a 
little a t  a time to forms tha t  are very different. A model of Switzerland, for 
instance, might well have the vertical heights exaggerated (so tha t  the three 
k's are no longer equal). Pn two dimensions, a (proportional) photograph from 
the air may be followed by a Mercator's projection with distortion, tha t  no 
longer leaves the variables separable. So we can go througlr a map of a 
subway system, with only the points of connection valid, to  ' maps ' of a type 
describable only mathematically. 

:In dynamic systems, if the transformation converts the real time t to  a 
model time t' also in r e d  time we have a ' working ' model. An unquestionable 
' model ' here would be a flow of electrons through a net of conducting sheets 
tha t  accurately models, in real time, the flow of underground water in Arizona. 
Bu t  the model sailing-boat no longer behaves proportionately, so tha t  a complex 
relation is necessary to  relate the model and the full-sized boat. Thus, in the 
working models, as in the static, we can readily obtain examples tha t  deviate 
more and more from the obvious model to  the most extreme types of transform, 
wtthout the appearance of any natural boundary dividing model from non- 
model. 

Can we follow the mathematician and use the concept of ' isomorphism ' ? 
It seems tha t  we cnnnot. The reason is tha t  though the concept of isomorphism 
is unique in the brauch where it started (in the finite groups) its extension to  
other branches leads to  so many new meanings tha t  the unicity is lost. 

As example, suppose we attempt to  apply it to  the universe of binary 
relations. It, a subset of E x  E. and S, a subset of F x F, me naturnlly re- 
gzrded as ' isomorphic ' if there exists a one-one mapping a of E onto F such 
tha t  S = aRa-' (Riguct 1948, 1951, Rourbaki 1958). But  S and R are still 
closely related, and able to  claim some ' model ' relationship if the definition 
is weakened to  

(with r also one-one). Then i t  can be weakened further by allowing 4 (and 7 )  

to  be a mapping generally or even a binary relation. The sign of equality 
similarly can be weakened t o  ' is contained in '. We have now arrived a t  
the relation given earlier ( I )  under ' regulation ') : 

which evidently implies some ' -morphic ' relation between p and 4 (with A 
assumed given). 

Jn this paper we shall be concerned chiefly with isomorphism between two 
dynamic systems (8 and R in fig. I ) .  We can therefore t ry  using the modern 
abstract definition of ' machine with input ' as a rigorous basis. 

To discuss iso-, and homo-, morphism of machines, i t  is convenient first, to 
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obtz~in a standard representation of these ideas in the theory of groups, where 
they originated. The relation can be stated thus : 

Lct the two groups bc, one of the set E of elements ei, with group operation 
(tnultiplication) 6, so that 6 (ei, ej) =e,, and other similarly of 8' on elements F. 
Then the second is a homomorph of the first if and only if there exists a mapping 
h, from E to F, so that, for all ei, ej& : 

If /L is 011~-one onto F, they are isomorphic. This basic equation form will 
cnable us to relate the other possible definitions. 

Hartmanis and Steams' (19GG) definition of machine IM' being a homo- 
morphism of &l follows naturally. Let machine M have a set S of internal 
statcs, a set I of input-values (symbols), a set 0 of output-values (symbols), and 
let it operate according to 6, a mappnlg of S x I to S, and A,  a mapping of 
S x 1 to 0. Let machine R1' be represented similarly by S', l', Of, S', A'. Then 
M' is a homomorphism of M if and only if there exist three mappings : 

h,, of S to S' 
A,, of 1 to I' 
h,,  of 0 to 0' 

such that, for all s E S and i E I : 

'I'his definition corresponds to the natural case in which corresponding 
inputs (to the two machines) will lead, through corresponding internal states, 
to corresponding outputs. But, unfortunately for our present purpose, there 
are many variations, some trivial and some gross, that also represent some sort 
of ' similarity '. Thus, a more general form, representing a more complex 
form of relation, would be given if the mappings 

h,, of S to S', and h,, of I to I', 

wcrc rcplaced by one mapping 

h,, of I x S to 1' x S' 

(Morc gencral because 11, may  or may not be separable into h ,  and h,). Then 
thc criterion would bc, 

Vi ,  s : S'[k,(s,i)] = 11,,[8(s:i)], 

a. form not identical with that a t  (3).  
r 7 .I.here a,re yet more. The ' Black 130s ' case ignores the internal states S, 

and treats two Black Boxes as identical if equal inputs give equal outputs. 
Formally, if p iund are the mappings from input to output, then the second 
13ox is a homotnorphism of the first if and only if there exists a mapping h, 
of I to If ,  such that : 
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Here i t  should be remembered that equality of outputs is only a special case of 
correspondence. Also closely related are two Black Boxes such that the 
second is ' de-coder ' to the first : the second, given the first's output, will take 
this as input and emit the original input : 

Vi EI : pip (i) = i .  ( 6 )  

This is an isomorphism. Pn the homomorphic relation, the input i and the 
final output p'p (i) would both be mapped by h to the same class : 

These exatnples may be sufficient to show the wide range of abstract 
' similarities ' that might claim to be 'isomorphisms '. There seem, in short, 
to be as many definitions possible to isomorphism as to model. It might seem 
that one could make practically any assertion one likes (such as that in our 
title) and then ensure its truth simply by adjusting the definitions. We 
believe, however, that we can mark out one case that is sufficiently a whole to 
be worth special statement. 

We consider the regulatory situation described earlier, in which the set of 
regulatory events R and the set of events S in the rest of the system (i.e. in the 
' reguland ' S, which we view as R's opponent) jointly determine, through a 
mapping 4, the outcome events Z. By an optimal regulator we will mean a 
regulator which produces regulatory events in such a way that H(Z) is minimal. 
Then under very broad conditions stated in the proof below, the following 
theorem holds : 

Theorew~ : The simplest optimal regulator R of a reguland S produces 
events R which are related to the events S by a nmpping IL : S+R. 

Restated somewhat less rigorously, the theorem says that the best regulator 
of a system is one which is a model of that system in the sense that the 
regulator's actions are merely the system's actions as seen through a mapping IL. 
The type of isomorphism here is that expressed (in the form used above) by 

where p and o are the mappings that R and S impose on their common input I. 
This form is essentially that of (5) above. 

Proof: The sets R, S, and Z and the mapping 4 : R x S+Z are presumed 
given. We will assume that over the set S there exists n probability distribu- 
tion p(S) which gives the relative frequencies of the events in S. We will 
further assume that the behaviour of any particular regulator R is specified by 
a conditional distribution p(R(S)  giving, for each event in S, a distribution on 
the regulatory events in R .  Nowp(S) and p(R1S) jointly determinep(R,S) and 
hencc p(Z) and H(Z), the entropy in the set of outcomes. ( H ( % ) =  -x p(z,) log p(z,).) With p(S) fixed, the class 

ere2 
of optimal regulators therefore corresponds to the class of optimal distributions 
p(1tJS) for which H(Z) is minimal. We will call this class of optimal distri- 
butions n. 

It; is possible for there to be very different distributions p(Z) all having the 
same minimal entropy If(%). To .consider that possibility would merely 
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cotnldicate this proof without affecting it in any essential way, so we will 
suppose that  every p ( l t ( S )  in n determines, with p(S) and $I, the same (unique) 
p(%) .  \Ve now select for examination an  arbitrary p(RIS) from x.  

'I'hc heart of the proof is the following lemma : 

.Lewmcr : Vsj ES, the set {$(ri,sj) : p(ri,sj) > 0) has only one element. 'Yhat 
is, for evcry s j  in S, p(Rlsj) is such that  all r i  with positive probability map, 
with sj nndcr $, to  the s ime z, in %. 

Proof 01 letmncr. : Supposc, to tlle contrary, tha t  p(.r, Isj) > 0, p(r,  Isj) > 0, 
$(,r1,sj)=z1, and +h(r,,sj)=z2f z,. Now p(rl,sj) and p(r,,sj) contribute to 
p ( 3 )  m d  p(z,) respectively, m d  by varying these probabilities (by sub- 
t r x t i n g  A from p(rl,sj) and adding A to p(r,,sj)) we could vary p(z,) and 
p(z2) i ~ n d  thereby w r y  If(%). We could make A either positive or negative, 
whiclicvcr would malte p(z,) and p(z,) more unequal. One of the useful and 
funt1:ttncntal properties of the entropy function is that  any such increase in 
in ib i~l~~ncc  in 14%) necessarily decreases H(Z). Consequently, we could star t  
with ;I. p(1tlS) fro111 the class n, which minimizes H ( % ) ,  and produce a new 
p( l t lS)  resulting in  ;I lower H(%) ; this contmdiction proves the lemma. 

Ihturning to the proof of the theorem, we see tha t  for any member of n 

; ~ n d  any sj in S, tlle values of R, for which p(RIsj) is positive all give the same 
z,,.. Without affecting H ( % ) ,  we can arbitrarily select one of those values of R 
a n d  set its conditional probability to  unity and the others to  zero. When this 
proccssis repeated for a11 sj in S, the result must be a member of a with 
p(1LIS) consisting entirely of ones nntl zeroes. I n  im obvious sense this is the  
si:vi.)~lest optimal p(l t lS)  since it is in fact a mapping h from S into R. Given 
thc corrcspondcnce betwcen optimal distributions p(RIS) and optimal regu- 
littors R, this proves the theorem. 

'.llhc Thcorem calls for several comments. :First, it leaves open the  possi- 
bility tha t  there are regulators which are just as successful (just as ' optimal ') 
as the simplest optimal regulator(s) but which are unnecessarily complex. 
:In this regard, the theoreln can bc interpreted as saying tha t  although not all 
optitnal reguln.tors me  models of their regulands, the  ones which are not nre all 
unncccssarily complex. 

Second, it shows clearly that  the search for the hest regulator is essentially 
i t  scnrch mnong the mappings from S into R ; only regulators for which there 
is s11c11 a mapping need be considered. 

Third, tlic proof of the theorem, by avoiding all mention of the inputs to  
the regulator 11 i ~ n d  its opponent S,  leaves open the question of how R, S ,  and Z 
iwe interrelated. The theorem applies equally well to the configurations of 
fig. I and fig. 2, the chief difference being tha t  in fig. 2 R is a model of S in the 
sensc tha t  the events 11% are mapped versions of the events S, whereas in fig. 1 
tlic modelling is stronger ; R must be a homo- or isomorph of S (since i t  11as the 
same input as S and a mapping-related output).  

:l&t, the assumption tha t  p(S) must exist (and be constant) can be 
weakcned ; if thc statistics of S change slowly with time, the theorem holds 
over any period throughout which p(S) is essentially constant. As p(S) 
changes, the mapping ?L will change appropriately, so tha t  the best regulator 
i n  such a. situation will still be a model of the reguland, but  a time-varying 
tnoclel will be needed t o  regulate the time-varying reguland. 
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5. Discussion 
The first effect of this theorem is to  change the status of model-making from 

optional to compulsory. As we said earlier, model-making has hitherto 
largcly beeu suggested (for regulating complex dynamic systems) as a possi- 
t~ility : the theorem shows that,  in a very wide class (specified in the proof 
of the theorem), success in regulation implies tha t  a sufficiently similar model 
must have been built, whether it was done explicitly, or simply developed as 
the regulator was improved. Thus the would-be model-maker now has a 
rigorous theorem t o  justify his work. 

To those who study the brain, the theorem founds a ' theoretical neurology '. 
Eor centuries, the study of the brain has been guided by the idea tha t  as the 
brain is the organ of thinking, whatever i t  does is right. But  this was the 
view held two centuries itgo about the human heart as a pump ; today's 
hydraulic engineers know too much about pumping to  follow the heart's 
method shvishlg : they know what the heart ought t o  do, and they measure its 
efficiency. The developing knowledge of regulation, information-processing, 
and control is building similar criteria for the brain. Now tha t  we know that  
any regulator (if it conforms to  the qualifications given) must modcl what it 
regulates, we can proceed to  measure how efficiently the brain carries out this 
process. There can no longer be question about whether the braiu models its 
environment : it must. 
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