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Abstract

In general, it is not a simple task to predict sequences or classify images, and it is even more problematic when both are combined. Nevertheless,
biological systems can easily predict sequences and are good at image recognition. For these reasons Long–Short Term Memory and Convolutional
Neural Networks were created and were based on the memory and visual systems. These algorithms have shown great properties and shown certain
resemblance, yet they are still not the same as their biological counterpart. This article reviews the biological bases and compares them.
c⃝ 2018 The Korean Institute of Communications and Information Sciences (KICS). Publishing Services by Elsevier B.V. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Two automation problems are classification of complex
inputs (i.e. images) and sequences prediction. The first problem
requires interpreting the input by understanding what is in it.
This can be solved by finding patterns, decomposing them and
later appointing a class. On the other hand, sequence prediction
requires to have recollection of past events that are similar to
the one presented, establish a pattern and make a prediction.
Consequently, it is even more problematic to predict sequences
of complex inputs. Thus, to solve these problems, it requires an
algorithm that can decompose the input and has some sort of
memory.

The brain is capable of doing these things easily. Hopfield in
1988 defined the Human brain as computer made out of organic
material and wet chemistry but, nonetheless, its one of the
world’s best computers [1]. This statement should not be taken
lightly, while the brain requires more effort for mathematic
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operations than its silicon computer counterpart, its perfor-
mance for object recognition and decoding natural language
outperform most machines. The brain is so powerful that can
quickly separate different inputs (visual, audio, sensory, motor,
etc.), process them, discard information and decide an action,
while still having control of the organs.

At the moment the brain is far from being understood,
nevertheless there are several areas and their basis on how
they work that can serve as inspiration for new algorithms.
Like, the auditory area that processes information of volume,
pitch, sound localization, rhythmic patterns and understanding
language; the sensory area involved in cutaneous and other
senses; the Motor area, in charge of muscles voluntary control;
the Visual Area, which decomposes images to understand in-
formation of spatial localization, object detection, recognition,
movement, and color. Another area, is the memory area, in
charge of collecting information, separating, reinforcing or
decreasing connections and many more.

Two algorithms based on brain areas that excel in classi-
fication, sequence prediction and decomposing complex data
are Long–Short Term Memory and Convolutional Neural Net-
works. Even more important is that these two algorithms
are currently being combined for classification of even more
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complex data. As said before, these areas are not completely
understood, yet there are many theories on the basis of how
they work. This paper intend to give a review of neural, visual
and memory areas, to have a better understanding on how they
work, and have a view on what they are currently missing.

2. Brain activation

Humans are exposed to abundant information which has
to reach many areas to be processed, stored and discarded.
The problem is most of this information is redundant, and
unneeded, and requires to be discarded. Another problem is
that most processes start at different times to accomplish a
single task (grasping starts with arm movement before the
fingers are completely configured). To accomplish these and
understand what is happening inside the brain it is important to
distinguish the path each signal follows, starting with nerve ac-
tivation from external inputs, to the processing center or storage
units.

2.1. Neural activation

Neurons are the basic elements in the brain, that adapt
their connections to other neurons to create representations
or process the information. A neuron can either change their
connections or readiness to release transmitter (temporary in-
creased or decreased without requiring either activity in the
neuron) to communicate with other neurons. It is important to
remember that these changes in connections can be persistent
or just temporal [2].

Information first received by a neuron from other neurons or
sensors by means of a chemical (neurotransmitters) that arrives
at the dendrites. Then, if the input is strong enough, the neuron
will generate a pulse which starts on the soma and is transmitted
through the axon terminal branches to other neurons.

Nerve electrical pulses, also known as action potentials,
are short lasting electrical events which briefly reverse their
membrane polarity, from negative (polarized) to positive (depo-
larized), by changing the ion concentration in and out the cell
of Potassium and Sodium. Although this is true, the real mecha-
nism to keep transmitting information is still unknown, there are
areas where exist a clear change in the frequency when infor-
mation is presented. Such as the relationship frequency/strength
in efferent (motor) peripheral system and increase of fire rate
in afferent (sensory) central nervous system. Also, there are
frequency bands where the information is thought to be coded.
These frequency bands appear to be operational on different
states of the mind. For example, Delta Rhythm (1–3 Hz) is
a state that is present in a deep sleep state or coma or Beta
Rhythm (13–26 Hz) & Gamma Rhythms (27 Hz >) are seen
in awake states.

Notably, there is no full explanation on how the codification
is done, and what happened at specific frequencies or why they
are limited to them. Also, neurons adapt to constant stimuli
with a gradual reduction to the fire rate. Meaning that constant
stimuli cannot be associated to a single rate code, in other words
coding cannot be implied from a simple stimulus or frequency.

2.2. Brain areas

In normal conditions, an average human brain contains 100
billion neurons, with an average of 1000 synapses connections
each (around 1014), which makes it complex to know exactly
what path an instruction or memory goes inside the brain.
Yet, inside the brain there exist areas that work together. For
example, general areas would be: the frontal lobes that are
responsible for problem solving, judgment and motor function;
the Parietal lobes manage sensation, handwriting and body po-
sition; the Temporal lobes are in charge of memory and hearing;
and the Occipital lobes are responsible of visual processing
system. Another areas are located in different areas of the brain,
like memory that is spread in different parts depending on the
input or vision that starts at the eyes and ends in the back of the
brain.

2.3. Memory

Understanding how the brain creates memory is something
that has intrigued many scientists over the years. Hilgard and
Marquis defined learning as “the change in strength of an act
through training procedures”, while Donald Hebb proposed
that “memories are stored by networks that strengthen their
connections to increase the likelihood of same activity patterns
being recreated at a later date” [3,4]. These mean that learning
has to be done through a process of repetition to enhance the
connections so they could later be used.

Certain approaches to memory hypothesize that items are
represented by different patterns of activity among the same
neural elements as opposed to occupy different locations that
could be linked from associations. This means, that using dif-
ferent patterns of activity, a group of elements could represent
different memories which can be retrieved later by generating
the same pattern. Then, a specific memory must be represented
by a pattern of micro-features, or a particular set of active
units. In other words, recollecting a memory must involve the
reconstruction of information from different locations of the
brain.

Specifically, the traces of these locations are called en-
grams [5], as the persistence encoding in neural tissue that
provides a physical basis for the persistence of memory, in other
words a memory trace. Notably, locating these traces is not
simple but certain characteristics have been defined. To begin
with, engrams are persistent changes in the brain consequence
of specific experiences or events, they have the potentials for
ecphory (memory retrieval process triggered when a specific
cue is proximal to a memory), and, the content of engrams
shows what happen at encoding and predicting what can be
recovered in subsequent process.1

It is believed that the formations of an engram require a
strengthening on the synaptic connections in a set of neurons
active during encoding, which generates a neuron ensemble.
Therefore, increase in synaptic connections increases likeli-
hood that the same path used for encoding will be used for

1 Engrams may exist dormant (the path exists even before a memory can be
created or recovered).
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retrieval. Engrams have to be both distributed and localized;
highly differentiated and specialized. Therefore no single mem-
ory center exists, with many parts participating in individual
events. Also it involves limited number of brain systems and
pathways with each part contributing differently to the repre-
sentation.

Additionally, information storage is tied to a processing
system in charge of analyzing incoming information. This
storage can modify extra data sent to similar analyzing chan-
nels. For example, a string characters heard cannot hardly
be recalled if another word is presented using the same
voice and localization [6], or a flashing light 100 ms after a
watched letter can erase its memory [7]. Furthermore, many
feats that require enormous memory capacity highly depend
upon processing skill. For instance the amount of chess board
pieces remembered within a board is larger as the expertise of a
player increases, but only if the pattern has been seen before
otherwise the number of pieces remembered is similar to a
naive [8].

It is important to know that engrams are dynamic (some
recordings are plastic), and a memory that has already been
established can be updated or changed with new information, or
retrieving a memory may transiently destabilized a previously
consolidating engram [9]. An example of this dynamic behavior
is reversal learning, where a second discrimination is processed,
but with the originally “correct” stimulus made “incorrect” and
vice-versa.2

All the types of learning show that the tracking engrams
is not easy, and requires to study the changes in neural
substrates (level of molecules, synapses, neurons, neuronal
ensembles, and/or brain circuits and networks). One of the first
to study this changes was Ramon y Cajal [10] who correctly
hypothesized that axons connect with neurons at protru-
sions (dendritic spines) and proposed that experience-induced
modifications would happen at these connections (later identi-
fied as synapses). Following the steps of Ramon y Cajal, Donal
Hebb [4] said that connection strength will increase between
simultaneously firing units creating neurons ensemble.

Learning has been characterized by changes in the struc-
ture of neurons and depend on synaptic modifications of a
biochemical or biophysical event, and can be accompanied by
morphological alterations in neurons structure. Other variations
appear in the synaptic compounds; in weight and thickness of
the somata; in the number, length and synaptic diameter of
dendrite branches; and in the number and shape of dendrite
spines and in the neural excitability.

Some of these changes have short duration (i.e. alterations in
synaptic compounds), others persist for longer periods (i.e. al-
terations in synaptic strength) while in rare occasions maybe
even transmitted to future generations (alterations in DNA).
Yet, these changes are inter-related (variations in compounds
might result in alterations in synaptic strength) and inside
of them underlies the formation of neural ensembles. For a
better understanding on the formation of this traces they can

2 In both cases the learning normally takes longer time since it has to
overwrite established connections.

be explained by using the two types of memory: Short-Term
Memory and Long-Term Memory.

Short-Term Memory (STM): is an ephemeral mem-
ory (∼15 to 30 s), that can be lost if there is a distraction.
It is believed that STM is a neural modification accompa-
nying behavioral habituation (waning of response that occurs
after repeated stimulation-located early in the pathway) or
sensitization (repeated administration of stimulus results in the
progressive amplification of response), which includes pre-
synaptic changes in the ability of sensory neurons to release
transmitter.

The idea of STM is that it holds information to accomplish
an event that is planned to do, like exploring different possible
solutions mentally before choosing one to make. The ability to
hold information for task completion is a human characteristic,
causing areas of the brain to become very active, especially the
pre-frontal lobe that is highly developed in humans compared
to other species.

Long-Term Memory (LTM): is a recollection that persists.
For STM to become LTM it must go through a maturation
process, which makes the trace resistant to some agents that
can impair or erase the STM [2]. Such maturation is known as
the consolidation process, which is either cellular or synaptic
and any of them can last for few days to many years.

To convert from STM to LTM information goes through
the hippocampus, which sorts out new sensations, compared
them to previously saved ones and creates associations. After-
wards, to memorize new facts, information is passed through
the hippocampus several times, which strengths associations
among new and old facts, until it is no longer necessary. At
these points, the corresponding cortex area had already learned
proper associations to reconstruct a memory. Notably, although
hippocampus is the catalyst to convert information, it is not
regarded as the memory center, since engrams are encoded in
several places. Yet, subjects with lesions in the hippocampus
cannot store new information for more than a few moments.

It is believed that the process to store memory is called Long-
Term Potentiation (LTP), which is a persistent strengthening
in synaptic connections due to continuous stimulation, which
becomes persistent over the synapse connection with just a few
minutes of stimulation [11]. The changes are accompanied with
temporary changes (∼8 h) in the dendrite spine connections
becoming rounder. Some experiments showed that in order to
strengthen associations, LTP uses a protein (P K Mζ ) which
acts on specific synaptic structures, modifying synapse’s micro
structure increasing the number of functional post-synaptic
receptors. Resulting in persistent enrichment of synaptic trans-
mission which encodes the memory.

Assuming a continuous strengthening due to LTP, the synap-
tic connection would become so tough that it would be im-
possible to encode new information. Hence, to conserve the
neuron plasticity, a process that weakens this connection must
exist [12]. This is known as Long-Term Depression (LTD).
Unlike LTP which is a brief and high frequency stimulation,
LTD occurs when the neurons are stimulated at low rate for
long periods. Notably, these two processes are complimentary,
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Fig. 1. (a) Potentiation and Depression tags are generated, (b) generation of protein for LTP and LTD. (c) Synapse connection are enhanced and reduced by LTP
and LTD.

while LTP can enhance excitatory post-synaptic potential, LTD
can reduce it, making the knowledge adjustment possible (see
Fig. 1).

2.4. Visual system

Human visual system is undoubtedly one of the world
wonders giving the ability to observe its physical environment.
Even blurry images or deformed objects can be recognized. The
visual system learns how to distinguish between shapes, sizes,
wavelengths, orientations and movement directions. It is able
to do all these things by dividing the information in two as it
enters the eye, sends it back into visual cortex, with millions of
neurons, with tens of billions connections between them which
dissect the image for processing. The visual cortex is divided
into Primary visual cortex (V1) and an entire series of visual
cortices (i.e. V2, V3, V4, and MT) that progressively process
the more complex images, see Fig. 2.

A little bit more general, the visual system consists mainly
of two parts: the eyes and the brain. Whereas brain works
as a complex image processing tool, the eye functions as the
equivalent of a camera. First, the eye focus on an object and
captures the light reflected from it, then, the light hitting directly
the eye passes through the cornea (a transparent protecting
layer working as a lens and refracting light), going through
the iris (which determines the amount of light to let through),
passing across the lens, to reach its final destination the retina.
There, an electrical signal will be produced through the optical
nerve, as long as the light bean is within the range of electro-
magnetic spectrum (about 300 to 700 nm).

In the retina, light is converted to electrical impulses by two
types of photoreceptors: rods, responsible for vision on low
light levels (scotopic vision) perceiving only shades of gray, and
cones, active on higher light levels (photopic vision) perceiving
colors and are responsible for high spatial activity. In fact,
to detect colors, there exist three types of cones, and each is
sensitive to a different band of electromagnetic spectrum (low-
wavelength light red, middle-wavelength light green and short-
wavelength light blue).

These photoreceptors work together to produce an image.
An example of these is the inhibitory behavior, which is
lateral inhibition on the eye that helps localizing boundaries
by deblurring, contrast enhancement (inhibition makes changes

Fig. 2. The visual system with different layers.

look more pronounce near the edges, i.e. Mach bands) and edge
detection.

The information generated by the photoreceptors is com-
pressed and transfer through two types of ganglion cells: the
magno and parvo cells. They differ on size, dimension of its
receptive field and conduction rate. In one hand, magno cells
are larger, with a big receptive field and higher conduction
rate and they are in charge of mediating information about
depth and motion. On the other hand, parvo cells are smaller,
have a short receptive field and slow conduction rate, and they
are in charge of processing information about the color and
detail. Evolutionary, these differentiation on the cells could be
explained since it is more important to know if something is
approaching fast than knowing what exactly is coming.

Notably, there are around 108 rods and cones in each eye,
but only 106 ganglion cells axons in the optic nerve. So, a single
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(a) (b)

Fig. 3. The ganglion cell activation and lateral activation.

ganglion must receive information from multiple receptor cells.
It was explained by Stephen W. Kuffler [13] that: ganglion cells
have a slow rate of firing even in the dark; directing diffuse light
to the retina has little effect on its rate, but a direct tiny spot
falling on a small circular area on the retina or its perimeter can
increase or inhibit ganglion cells fire rate; the light that shines
on the retina and its perimeter at the same time produces no
effect on the firing rate; finally, that other ganglion cells, have a
central “off” surrounded by an “on” area. As a result, the optic
nerve does not simply tell the brain that light has been detected,
rather that contrast between light and dark (i.e. shape) has been
detected, see Fig. 3(a).

Information is send to the Lateral Genticulate Nucleus
(LGN), where it connects to a new set of inter-neurons. The
information is then send to a specialized area in the occipital
cortex called the visual cortex. This area was discovered by
David Hubel and Torsten Weisel [14], by inserting electrodes
in this area while projecting images into the eye of an animal
instead of just a direct light, and observing the production of
a firing rate (Fig. 3(b)). This experiment explains that even
though cells in the LGN responded similar to ganglion cells,
they no longer react to circles of light instead they did to
either bars of light (or dark), or straight-line edges between
light and dark areas. Specifically, these preferences for lines
could be explained if they receive information from LGN
cells (with circular response areas) arrange in a line (Fig. 3(b)).
Additionally, “simple cortical cells” respond to particular area
of the screen with a line at a specific angle, while another one
will respond to a different position but same angle. It is then that
another type of cell, “complex cortical cell”, that information is
joined using the orientation but with edges moving across the
path [15].

Even though the same principle can be used to understand
how curves can be detected (using neurons detecting prede-
fined two dimensional shapes), there is a theory by Steven
Zucker [16], where, instead of detecting point-wise the curve, it
uses connections from semi-similar direction lines to detect the
derivative of straight lines (tangent at a certain point). That by
using simultaneous firing of these neurons, it would tune into
the presence of a continuous curve rather than separate points.
These theory can also explain how monocular depths can be
detected (with the same tangential angle system) using the rate
at which the angles change allows for depth perception in the
absence of binocular vision.

Another important area is the perception of motion, which
is detected by different patterns of light in the retinal image.
It is important to detect motion for deducting if something
is moving in your direction (attract attention); to segment the
foreground from background; to see 3D shapes and for self-
localization in the space (navigation and collision avoidance).
The problem is that it can be tricked easily with a simple light
change (e.g. rotating spirals). The area responsible to motion is
the motor track area. The neurons in this area are selective to
velocity (speed and direction) receiving inputs from direction-
selective neurons from V1. It can also be tricked by stimulating
the area responding to movement, even though the perceive
moment is in the opposite direction.

3. Computational neuroscience

Artificial Neural Networks (ANN) are models inspired in
biological neurons. It is worth mentioning that the complexity
of an ANN neuron is highly abstract, and the networks are
still far from the real behavior. Yet, many things have been
accomplished by using them and many theories have been
created. For instance the first model of the neuron cell was
proposed by Warren McCulloch and Walter Pitts [17] which
showed that even simple types of networks could compute any
arithmetic or logic function (Fig. 4). Comparatively, an ANN
unit receives activation inputs (signals through the synapses to
the dendrites), if the pulses are strong enough the activation
function reacts (threshold is surpassed) as the unit sends the
signal to connected units (signal passes through axon to the
synapses), and with this mechanism it can understand patterns
and remember sequences.

Later, Frank Rosenblatt developed the first successful neuro-
computer called perceptron [18] that learn from examples to
adapt its weights and that was improved with the work of Paul
Werbos in 1974 [19] which adapted the weights based on the
error gradient. From these theories many new architectures have
been developed based on several areas of the brain, like Long–
Short Term memory is based on the memory and Convolution
Neural Networks on the visual system.

Long–Short Term Memory Networks (LSTM): are a type
of ANN that feedback the information to every neuron. The
feedback is used to provide some kind of memory that maps
sequences. It uses units called memory blocks (Fig. 5(a)) which
contain memory cells and share multiplicative gate units within
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(a) Neuron. (b) Neuron model.

Fig. 4. The basic model of an artificial neural network.

(a) (b)

Fig. 5. LSTM with memory blocks in the hidden layer.

the block (Fig. 5(b)) and a recurrently self-connected units
called “Constant Error Carousels” (CEC) whose activation is
the cell state. The CEC enforces the error flow through them and
with the gates it controls what is kept, what is left out and what
is remembered by controlling the input, output and forgetting
of the cells.

To illustrate each of the memories it can be seen all the
gates are connected to all the current inputs and all the previous
outputs, this could represent a basic short term memory; on the
other hand, information from the previous states can be kept
or erased (according to forget gate) and accessed (output gate)
using the CECs, that would mimic a long term Memory.

Convolution Neural Networks (CNN): are a type of ANN
that works by extracting local features at a high resolution and
successfully combining them into more complex features at
lower resolution. Notably, CNN are based on the work of Hubel
and Wiesel [14] and try to mimic how some cells react to certain
lines patterns, as well light and dark patterns. Additionally there
were some other cells which detected edges no mattering where
they were located.

In summary, CNN intention is to use filters to extract impor-
tant information that is located in the input feature map (i.e. an
image) by multiplying a weight matrix across the input feature
maps, and get new maps with simpler information. These
process can be repeated for several layers until it reaches a final
section where there is a simplification of the input feature map,

Fig. 6. A convolutional neural network.

and from there the class can be calculated using other form of
training (Fig. 6).

4. Discussion

There exist some similitudes and differences between the
brain and ANN. In the case of neurons, the brain changes its
structure and connexions and how it reacts to each of them
adapts its relationships. In the case of ANN, the network adapts
its connexions only by changing the values of its weights. Also
ANN tends to be densely connected almost all neurons from
one layer are connected with the next, while in the brain there
are only 0.0001% of connections. Comparing the memory, the
brain apparently store information using differences in weights,
and morphology, while LSTM can only remember by adapting
its weights and which chose how much information will be
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feedback. Also, on one hand the brain apparently predicts by
making comparison with past events even if they are not related,
on the other hand LSTM has to have similar sequences to make
a prediction.

Correspondingly, human vision uses layers to decompose an
image into simpler representation, similar to what CNN does
using filters to simple features to classify them. Conversely, the
brain has different units for grays and colors that can speed up
the process, while in CNN there is no difference in between
all the cells. Also, brain can distinguish from objects moving,
which is something that is missing from CNN without the use
of other topologies.

Thus, some areas of opportunity can be determined:

• Adapt the morphology of the artificial neuron according
to the information and not just the weights.

• Intrinsically trained for different tasks simultaneously.
• Make relationships based on previous assumptions.
• Memories change depending on the frequency of the

input (high frequency store, low frequency erase).
• Different units depending on the input that speeds the

process.
• Use differentiation to detect different shapes and move-

ment.

5. Conclusion

The central theme of this article is reviewing the basis of
visual and memory brain activation areas, use two techniques
which are based on them, with the final intention of giving
their biological foundation. Although, these two algorithms are
showing great progress, as far as we understand they do not
completely resemble their biological counterparts. While this
might change in the future, at the moment, its not perfect, and
still the brain has higher capabilities.
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