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Abstract

We describe a hierarchical, probabilistic model that learns to extract complex mo-
tion from movies of the natural environment. The model consists of two hidden
layers: the first layer produces a sparse representation of the image that is ex-
pressed in terms of local amplitude and phase variables. The second layer learns
the higher-order structure among the time-varying phase variables. After train-
ing on natural movies, the top layer units discover the structure of phase-shifts
within the first layer. We show that the top layer units encode transformational
invariants: they are selective for the speed and direction of a moving pattern,
but are invariant to its spatial structure (orientation/spatial-frequency). The diver-
sity of units in both the intermediate and top layers of the model provides a set
of testable predictions for representations that might be found in V1 and MT. In
addition, the model demonstrates how feedback from higher levels can influence
representations at lower levels as a by-product of inference in a graphical model.

1 Introduction

A key attribute of visual perception is the ability to extract invariances from visual input. In the
realm of object recognition, the goal of invariant representation is quite clear: a successful object
recognition system must be invariant to image variations resulting from different views of the same
object. While spatial invariants are essential for forming a useful representation of the natural en-
vironment, there is another, equally important form of visual invariance, namely transformational
invariance. A transformational invariant refers to the dynamic visual structure that remains the same
when the spatial structure changes. For example, the property that a soccer ball moving through the
air shares with a football moving through the air is a transformational invariant; it is specific to how
the ball moves but invariant to the shape or form of the object. Here we seek to learn such invariants
from the statistics of natural movies.

There have been numerous efforts to learn spatial invariants [1, 2, 3] from the statistics of natural
images, especially with the goal of producing representations useful for object recognition [4, 5, 6].
However, there have been few attempts to learn transformational invariants from natural sensory
data. Previous efforts have either relied on using unnatural, hand-tuned stimuli [7, 8, 9], or unrealistic
supervised learning algorithms using only rigid translation of an image [10]. Furthermore, it is
unclear to what extent these models have captured the diversity of transformations in natural visual
scenes or to what level of abstraction their representations produce transformational invariants.

Previous work learning sparse codes of image sequences has shown that it is possible to recover
local, direction-selective components (akin to translating Gabors) [11]. However, this type of model
does not capture the abstract property of motion because each unit is bound to a specific orientation,
spatial-frequency and location within the image—i.e., it still suffers from the aperture problem.
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Here we describe a hierarchical probabilistic generative model that learns transformational invari-
ants from unsupervised exposure to natural movies. A key aspect of the model is the factorization
of visual information into form and motion, as compared to simply extracting these properties sep-
arately. The latter approach characterizes most models of form and motion processing in the visual
cortical hierarchy [6, 12], but suffers from the fact that information about these properties is not
bound together—i.e., it is not possible to reconstruct an image sequence from a representation in
which form and motion have been extracted by separate and independent mechanisms. While re-
construction is not the goal of vision, the ability to interact with the environment is key, and thus
binding these properties together is likely to be crucial for properly interacting with the world. In
the model we propose here, form and motion are factorized, meaning that extracting one property
depends upon the other. It specifies not only how they are extracted, but how they are combined to
provide a full description of image content.

We show that when such a model is adapted to natural movies, the top layer units learn to extract
transformational invariants. The diversity of units in both the intermediate layer and top layer pro-
vides a set of testable predictions for representations that might be found in V1 and MT. The model
also demonstrates how feedback from higher levels can influence representations at lower levels as
a by-product of inference in a graphical model.

2 Hierarchical Model

In this section we introduce our hierarchical generative model of time-varying images. The model
consists of an input layer and two hidden layers as shown in Figure 1. The input layer represents the
time-varying image pixel intensities. The first hidden layer is a sparse coding model utilizing com-
plex basis functions, and shares many properties with subspace-ICA [13] and the standard energy
model of complex cells [14]. The second hidden layer models the dynamics of the complex basis
function phase variables.

2.1 Sparse coding with complex basis functions

In previous work it has been shown that many of the observed response properties of neurons in V1
may be accounted for in terms of a sparse coding model of images [15, 16]:

I(x,t) =
∑
i

ui(t)Ai(x) + n(x,t) (1)

where I(x,t) is the image intensity as a function of space (x ∈ R2) and time, Ai(x) is a spatial basis
function with coefficient ui, and the term, n(x,t) corresponds to Gaussian noise with variance σ2

n that
is small compared to the image variance. The sparse coding model imposes a kurtotic, independent
prior over the coefficients, and when adapted to natural image patches the Ai(x) converge to a set of
localized, oriented, multiscale functions similar to a Gabor wavelet decomposition of images.

We propose here a generalization of the sparse coding model to complex variables that is primarily
motivated from two observations of natural image statistics. The first observation is that although
the prior is factorial, the actual joint distribution of coefficients, even after learning, exhibits strong
statistical dependencies. These are most clearly seen as circularly symmetric, yet kurtotic distribu-
tions among pairs of coefficients corresponding to neighboring basis functions, as first described by
Zetzsche [17]. Such a circularly symmetric distribution strongly suggests that these pairs of coeffi-
cients are better described in polar coordinates rather than Cartesian coordinates—i.e., in terms of
amplitude and phase. The second observation comes from considering the dynamics of coefficients
through time. As pointed out by Hyvarinen [3], the temporal evolution of a coefficient in response
to a movie, ui(t), can be well described in terms of the product of a smooth amplitude envelope
multiplied by a quickly changing variable. A similar result from Kording [1] indicates that temporal
continuity in amplitude provides a strong cue for learning local invariances. These results are closely
related to the trace learning rule of Foldiak [18] and slow feature analysis [19].

With these observations in mind, we have modified the sparse coding model by utilizing a complex
basis function model as follows:

I(x,t) =
∑
i

<{z∗i (t)Ai(x)}+ n(x,t) (2)
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where the basis functions now have real and imaginary parts, Ai(x) = ARi (x) + jAIi (x), and the
coefficients are also complex, with zi(t) = ai(t)e

jφi(t). (∗ indicates the complex conjugate and the
notation <{.} denotes taking the ‘real part’ of the argument.) The resulting generative model can
also be written as:

I(x,t) =
∑
i

ai(t)
[
cosφi(t)ARi (x) + sinφi(t)AIi (x)

]
+ n(x,t) (3)

Thus, each pair of basis functions ARi ,AIi forms a 2-dimensional subspace and is controlled by an
amplitude ai and phase φi that determine the position within each subspace. Note that the basis
functions are only functions of space. Therefore, the temporal dynamics within image sequences
will be expressed in the temporal dynamics of the amplitude and phase.

The prior over the complex coefficients, z, is designed so as to enforce circularly symmetric distri-
butions and smooth amplitude dynamics as observed from time-varying natural images:

P (ai(t)|ai(t−1)) ∝ e−Spa(ai(t))− Sla(ai(t), ai(t−1)) (4)

The first term in the exponential imposes a sparse prior on the coefficient amplitudes. Here we
use Sp(ai(t)) = λai(t) (we have found other kurtotic priors to yield similar results). Since there
is no prior over the phases, this will result in circularly symmetric kurtotic distributions over each
subspace. The second term in the exponential imposes temporal stability on the time rate of change
of the amplitudes and is given by: Sla(ai(t), ai(t−1)) = (ai(t)− ai(t−1))2.

For a sequence of images the resulting negative log-posterior for the first hidden layer becomes:

E1 =
∑
t

∑
x

1
σ2
N

[
I(x,t)−

∑
i

<{z∗i (t)Ai(x)}
]2

+
∑
i,t

Sp(ai(t)) +
∑
i,t

Sl(ai(t), ai(t−1)) (5)

While this model by no means captures the full joint distribution of coefficients, it does at least
capture the circular symmetric dependencies among pairs of coefficients, which allows for the ex-
plicit representation of amplitude and phase. As we shall see, this representation serves as a staging
ground for learning higher-order dependencies over space and time.

2.2 Phase Transformations

Given the decomposition into amplitude and phase variables, we now have a non-linear represen-
tation of image content that enables us to learn its structure in another linear generative model. In
particular, the dynamics of objects moving in continuous trajectories through the world over short
epochs will be encoded in the population activity of the phase variables φi. Furthermore, because
we have encoded these trajectories with an angular variable, many transformations in the image do-
main that would otherwise be nonlinear in the coefficients ui will now be linearized. This linear
relationship allows us to model the time-rate of change of the phase variables with a simple linear
generative model.

We thus model the first-order time derivative of the phase variables as follows:

φ̇i(t) =
∑
k

Dik wk(t) + νi(t) (6)

where φ̇i = φi(t) − φi(t−1), and D is the basis function matrix specifying how the high-level
variables wk influence the phase shifts φ̇i. The additive noise term, νi, represents uncertainty or
noise in the estimate of the phase time-rate of change. As before, we impose a sparse, independent
distribution on the coefficients wk, in this case with a sparse cost function given as:

Sw(wk(t)) = β log
(

1 +
(wk(t)

σ

)2
)

(7)

The uncertainty over the phase shifts is given by a von Mises distribution: p(νi) ∝ exp(κ cos(νi)).
Thus, the log-posterior over the second layer units is given by

E2 = −
∑
t

∑
i∈{ai(t)>0}

κ cos(φ̇i − [Dw(t)]i) +
∑
k

Sw(wk(t)) (8)
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Figure 1: Graph of the hierarchical model showing the relationship among hidden variables.

Because the angle of a variable with 0 amplitude is undefined, we exclude angles where the corre-
sponding amplitude is 0 from our cost function.

Note that in the first layer we did not introduce any prior on the phase variables. With our second
hidden layer, E2 can be viewed as a log-prior on the time rate of change of the phase variables:
φ̇i(t). For example, when [Dw(t)]i = 0, the prior on φ̇i(t) is peaked around 0, or no change in phase.
Activating the w variables moves the prior away from φ̇i(t) = 0, encouraging certain patterns of
phase shifting that will in turn produce patterns of motion in the image domain.

The structure of the complete graphical model is shown in Figure 1.

2.3 Learning and inference

A variational learning algorithm is used to adapt the basis functions in both layers. First we infer
the maximum a posteriori estimate of the variables a, φ, and w for the current values of the basis
functions. Given the map estimate of these variables we then perform a gradient update on the basis
functions. The two steps are iterated until convergence.

To infer coefficients in both the first and second hidden layers we perform gradient descent with
respect to the coefficients of the total cost function (E1 + E2). The resulting dynamics for the
amplitudes and phases in the first layer are given by

∆ai(t) ∝ <{bi(t)} − Sp′(ai(t))− Sl′(ai(t), ai(t−1)) (9)

∆φi(t) ∝ ={bi(t)} ai(t)− κ sin(φ̇i(t)− [Dw(t)]i) + κ sin(φ̇i(t+1)− [Dw(t+1)]i) (10)

with bi(t) = 1
σ2
N

e−jφi(t)
∑
x

Ai(x)

[
I(x,t)−

∑
i

<{z∗i (t)Ai(x)}
]

. (={.} denotes the imaginary part.)

The dynamics for the second layer coefficients wk are given by

∆wk(t) ∝
∑

i∈{ai(t)>0}
κ sin(φ̇i − [Dw(t)]i)Dik + S′w(wk(t)) (11)

Note that the two hidden layers are coupled, since the inference ofw depends on φ, and the inference
of φ in turn depends onw, in addition to I and a. Thus, the phases are computed from a combination
of bottom-up (I), horizontal (a) and top-down (w) influences.

The learning rule for the first layer basis functions is given by the gradient of E1 with respect to
Ai(x), using the values of the complex coefficients inferred in eqs. 9 and 10 above:

∆Ai(x) ∝ 1
σ2
N

∑
t

[
I(x,t)−

∑
i

<{z∗i (t)Ai(x)}
]
zi(t) (12)

The learning rule for the second layer basis functions is given by the gradient of E2 with respect to
D, using the values of φ and w inferred above:

∆Dik = κ
∑

t∈ai(t)>0

sin(φ̇i − [Dw(t)]i)wk(t) (13)

After each gradient update the basis functions are normalized to have unit length.
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3 Results

3.1 Simulation procedures

The model was trained on natural image sequences obtained from Hans van Hateren’s repository at
http://hlab.phys.rug.nl/vidlib/. The movies were spatially lowpass filtered and whitened
as described previously [15]. Note that no whitening in time was performed since the temporal
structure will be learned by the hierarchical model. The movies consisted of footage of animals in
grasslands along rivers and streams. They contain a variety of motions due to the movements of
animals in the scene, camera motion, tracking (which introduces background motion), and motion
borders due to occlusion.

We trained the first layer of the model on 20x20 pixel image patches, using 400 complex basis
functions Ai in the first hidden layer initialized to random values. During this initial phase of
learning only the terms inE1 are used to infer the ai and φi. Once the first layer reaches convergence,
we begin training the second layer, using 100 bases, Di, initialized to random values. The second
layer bases are initially trained on the MAP estimates of the first layer φ̇i inferred using E1 only.
After the second layer begins to converge we infer coefficients in both the first layer and the second
layer simultaneously using all terms in E1 + E2 (we observed that this improved convergence in
the second layer). We then continued learning in both layers until convergence. The bootstrapping
of the second layer was used to speed convergence and we did not observe much change in the first
layer basis functions after the initial convergence. We have run the algorithm multiple times and
have observed qualitatively similar results on each run. Here we describe the results of one run.

3.2 Learned complex basis functions

After learning, the first layer complex basis functions converge to a set of localized, oriented, and
bandpass functions with real and imaginary parts roughly in quadrature. The population of filters as
a whole tile the joint spaces of orientation, position, and center spatial frequency. Not surprisingly,
this result shares similarities to previous results described in [1] and [3]. Figure 2(a) shows the real
part, imaginary part, amplitude, and angle of two representative basis functions as a function of
space. Examining the amplitude of the basis function we see that it is localized and has a roughly
Gaussian envelope. The angle as a function of space reveals a smooth ramping of the phase in the
direction perpendicular to the basis functions’ orientation.

∠Ai|Ai|AI
iAR

i

A292

A191

a(t)

φ(t)

R{A191z
∗
191}

R{A292z
∗
292}

(a) (b) (c)

Figure 2: Learned Complex Basis Functions (for panel (b) see the animation in
movie TransInv Figure2.mov).

A useful way of visualizing what a generative model has learned is to generate images while varying
the coefficients. Figure 2(b) displays the resulting image sequences produced by two representative
basis functions as the amplitude and phase follow the indicated time courses. The amplitude has
the effect of controlling the presence of the feature within the image and the phase is related to the
position of the edge within the image. Importantly for our hierarchical model, the time derivative,
or slope of the phase through time is directly related to the movement of the edge through time.

Figure 2(c) shows how the population of complex basis functions tiles the space of position (left)
and spatial-frequency (right). Each dot represents a different basis function according to its maxi-
mum amplitude in the space domain, or its maximum amplitude in the frequency domain computed
via the 2D Fourier transform of each complex pair (which produces a single peak in the spatial-
frequency plane). The basis functions uniformly tile both domains. This visualization will be useful
for understanding what the phase shifting components D in the second layer have learned.
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3.3 Learned phase-shift components

Figure 3 shows a random sampling of 16 of the learned phase-shift components, Di, visualized
in both the space domain and frequency domain depictions of the first-layer units. The strength
of connection for each component is denoted by hue (red +, blue -, gray 0). Some have a global
influence over all spatial positions within the 20x20 input array (e.g., row 1, column 1), while
others have influence only over a local region (e.g., row 1, column 6). Those with a linear ramp
in the Fourier domain correspond to rigid translation, since the higher spatial-frequencies will spin
their phases at proportionally higher rates (and negative spatial-frequencies will spin in the opposite
direction). Some functions we believe arise from aliased temporal structure in the movies (row 1,
column 5), and others are unknown (row 2, column 4). We are actively seeking methods to quantify
these classes of learned phase-shift components.

Spatial 
Domain

Frequency
Domain

Spatial 
Domain

Frequency
Domain

Figure 3: Learned phase shifting components.

The phase shift components generate movements within the image that are invariant to aspects of
the spatial structure such as orientation and spatial-frequency. We demonstrate this in Figure 4 by
showing the generated transforms for 4 representative phase-shift components. The illustrated trans-
formation components produce: (a) global translation, (b) local translation, (c) horizontal dilation
and contraction, and (d) local warping. See the caption of Figure 4 for a more detailed description
of the generated motions. We encourage the reader to view the accompanying videos.

4 Discussion and conclusions

The computational vision community has spent considerable effort on developing motion models.
Of particular relevance to our work is the Motion-Energy model [14], which signals motion via
the amplitudes of quadrature pair filter outputs, similar to the responses of complex neurons in V1.
Simoncelli & Heeger have shown how it is possible to extract motion by pooling over a population
of such units lying within a common plane in the 3D Fourier domain [12]. It has not been shown
how the representations in these models could be learned from natural images. Furthermore, it is
unclear how more complicated transformations, other than local translations, would be represented
by such a model, or indeed how the entire joint space of position, direction and speed should be
tiled to provide a complete description of time-varying images. Our model addresses each of these
problems: it learns from the statistics of natural movies how to best tile the joint domain of position
and motion, and it captures complex motion beyond uniform translation.

Central to our model is the representation of phase. The use of phase information for computing
motion is not new, and was used by Fleet and Jepson [20] to compute optic flow. In addition, as
shown in Eero Simoncelli’s Thesis, one can establish a formal equivalence between phase-based
methods and motion energy models. Here we argue that phase provides a convenient representation
as it linearizes trajectories in coefficient space and thus allows one to capture the higher-order struc-
ture via a simple linear generative model. Whether or how phase is represented in V1 is not known,
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(a)

(b)

(c)

(d)

Figure 4: Visualization of learned transformational invariants (best viewed as animations in
movie TransInv Figure4x.mov, x=a,b,c,d). Each phase-shift component produces a pattern of
motion that is invariant to the spatial structure contained within the image. Each panel displays the
induced image transformations for a different basis function, Di. Induced motions are shown for
four different image patches with the original static patch displayed in the center position. Induced
motions are produced by turning on the respective coefficient wi positively (patches to the left of
center) and negatively (patches to the right of center). The final image in each sequence shows the
pixel-wise variance of the transformation (white values indicate where image pixels are changing
through time, which may be difficult to discern in this static presentation). The example in (a) pro-
duces global motion in the direction of 45 deg. The strongly oriented structure within the first two
patches clearly moves along the axis of motion. Patches with more complicated spatial structure (4th
patch) also show similar motion. The next example (b) produces local vertical motion in the lower
portion of the image patch only. Note that in the first patch the strong edge in the lower portion of
the patch moves while the edge in the upper portion remains fixed. Again, this component produces
similar transformations irrespective of the spatial structure contained in the image. The example in
(c) produces horizontal motion in the left part of the image in the opposite direction of horizontal
motion in the right half (the two halves of the image either converge or diverge). Note that the
oriented structure in the first two patches becomes more closely spaced in the leftmost patch and is
more widely spaced in the right most image. This is seen clearly in the third image as the spacing
between the vertical structure is most narrow in the leftmost image and widest in the rightmost im-
age. The example in (d) produces warping in the upper part of the visual field. This example does
not lend itself to a simple description, but appears to produce a local rotation of the image patch.

but it may be worth looking for units that have response properties similar to those of the ‘phase
units’ in our model.

Our model also has implications for other aspects of visual processing and cortical architecture.
Under our model we may reinterpret the hypothesized split between the dorsal and ventral visual
streams. Instead of independent processing streams focused on form perception and motion percep-
tion, the two streams may represent complementary aspects of visual information: spatial invariants
and transformational invariants. Indeed, the pattern-invariant direction tuning of neurons in MT is
strikingly similar to that found in our model [21]. Importantly though, in our model information
about form and motion is bound together since it is computed by a process of factorization rather
than by independent mechanisms in separate streams.

Our model also illustrates a functional role for feedback between higher visual areas and primary
visual cortex, not unlike the proposed inference pathways suggested by Lee and Mumford [22]. The
first layer units are responsive to visual information in a narrow spatial window and narrow spatial
frequency band. However, the top layer units receive input from a diverse population of first layer
units and can thus disambiguate local information by providing a bias to the time rate of change
of the phase variables. Because the second layer weights D are adapted to the statistics of natural
movies, these biases will be consistent with the statistical distribution of motion occurring in the
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natural environment. This method can thus deal with artifacts such as noise or temporal aliasing and
can be used to disambiguate local motions confounded by the aperture problem.

Our model could be extended in a number of ways. Most obviously, the graphical model in Figure 1
begs the question of what would be gained by modeling the joint distribution over the amplitudes,
ai, in addition to the phases. To some degree, this line of approach has already been pursued by
Karklin & Lewicki [2], and they have shown that the high level units in this case learn spatial
invariants within the image. We are thus eager to combine both of these models into a unified model
of higher-order form and motion in images.
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[3] A. Hyvärinen, J. Hurri, and J. Väyrynen. Bubbles: a unifying framework for low-level statistical proper-
ties of natural image sequences. Journal of the Optical Society of America A, 20(7):1237–1252, 2003.

[4] G. Wallis and E.T. Rolls. Invariant face and object recognition in the visual system. Progress in Neurobi-
ology, 51(2):167–194, 1997.

[5] Y. LeCun, F.J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to
pose and lighting. Computer Vision and Pattern Recognition, 2004.

[6] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object recognition with cortex-like
mechanisms. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 411–426, 2007.

[7] SJ Nowlan and T.J. Sejnowski. A selection model for motion processing in area MT of primates. Journal
of Neuroscience, 15(2):1195–1214, 1995.

[8] K. Zhang, M. I. Sereno, and M. E. Sereno. Emergence of position-independent detectors of sense of
rotation and dilation with Hebbian learning: An analysis. Neural Computation, 5(4):597–612, 1993.

[9] E.T. Rolls and S.M. Stringer. Invariant global motion recognition in the dorsal visual system: A unifying
theory. Neural Computation, 19(1):139–169, 2007.

[10] D.B. Grimes and R.P.N. Rao. Bilinear sparse coding for invariant vision. Neural Computation, 17(1):47–
73, 2005.

[11] B.A. Olshausen. Probabilistic Models of Perception and Brain Function, chapter Sparse codes and spikes,
pages 257–272. MIT Press, 2002.

[12] E.P. Simoncelli and D.J. Heeger. A model of neuronal responses in visual area MT. Vision Research,
38(5):743–761, 1998.

[13] A. Hyvarinen and P. Hoyer. Emergence of phase-and shift-invariant features by decomposition of natural
images into independent feature subspaces. Neural Computation, 12(7):1705–1720, 2000.

[14] E.H. Adelson and J.R. Bergen. Spatiotemporal energy models for the perception of motion. Journal of
the Optical Society of America, A, 2(2):284–299, 1985.

[15] B.A. Olshausen and D.J. Field. Sparse coding with an overcomplete basis set: A strategy employed by
v1? Vision Research, 37:3311–3325, 1997.

[16] A.J. Bell and T. Sejnowski. The independent components of natural images are edge filters. Vision
Research, 37:3327–3338, 1997.

[17] C. Zetzsche, G. Krieger, and B. Wegmann. The atoms of vision: Cartesian or polar? Journal of the
Optical Society of America A, 16(7):1554–1565, 1999.

[18] P. Foldiak. Learning invariance from transformation sequences. Neural Computation, 3(2):194–200,
1991.

[19] L. Wiskott and T.J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural
Computation, 14(4):715–770, 2002.

[20] D.J. Fleet and A.D. Jepson. Computation of component image velocity from local phase information.
International Journal of Computer Vision, 5:77–104, 1990.

[21] J.A. Movshon, E.H. Adelson, M.S. Gizzi, and W.T. Newsome. The analysis of moving visual patterns.
Pattern Recognition Mechanisms, 54:117–151, 1985.

[22] T.S. Lee and D. Mumford. Hierarchical bayesian inference in the visual cortex. Journal of the Optical
Society of America A, 20(7):1434–1448, 2003.

8


