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Abstract. Perceptual geometry is an emerging field of interdisciplinary research whose objectives focus on study of 
geometry from the perspective of visual perception, and in turn, apply such geometric findings to the ecological study of 
vision.  Perceptual geometry attempts to answer fundamental questions in perception of form and representation of space 
through synthesis of cognitive and biological theories of visual perception with geometric theories of the physical world. 
Perception of form and space are among fundamental problems in vision science. In recent cognitive and computational 
models of human perception, natural scenes are used systematically as preferred visual stimuli.  Among key problems in 
perception of form and space, we have examined perception of geometry of natural surfaces and curves, e.g. as in the 
observer’s environment. Besides a systematic mathematical foundation for a remarkably general framework, the advantages 
of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or “recreate images” whose 
geometric invariants and quantities might be perceived and estimated by an observer. The latter is at the very foundation of 
understanding the nature of perception of space and form, and the (computer graphics) problem of rendering scenes to 
visually invoke virtual presence. 
 
 

Introduction 
 
In previous SPIE Vision Geometry conferences, we have introduced the concept of the Gestalt of a surface, and examined 
the role of perception in estimation of some geometric quantities of natural surfaces through the proposed multi-scale multi-
resolution Gestalt theory of surfaces. Besides a systematic mathematical foundation for a remarkably general framework, 
the advantages of the Gestalt theory of natural surfaces include a concrete computational approach to simulate or “recreate 
images” whose geometric invariants and quantities might be perceived and estimated by an observer. The computational 
modeling of the Gestalt of surfaces is proposed within statistical learning theory. The model depends on the probabilistic 
functions whose measurements (for each observer) are within standard psychophysics. In this paper, we introduce the 
concept of perceptual space as a vehicle to develop the perceptual geometry of the visual space and object forms, discuss its 
significance in modeling human vision and related topics. In a nutshell, we propose that perception of space and form can 
be learned in computational input-output systems (that is, simplest forms of intelligent systems) that afford at least the 
following three capacities: (1) Memory to retain a representation. (2) Capability to perform and extract statistical 
correlations. (3) Ability to organize the results of correlation into a coherent response that fits into a feedback mechanism 
for further refinement. The relative simplicity of such basic learning systems is essential in extracting the most general 
principles that would underlie mechanisms for perception of space and form. Further, simpler mechanisms that are not 
biased by additional structures and mechanisms are more amenable to logical/algorithmic constructs, or even a rigorous 
mathematical formalism, the basic step towards computational implementation and design of experiments for (bio-
behavioral) validation of the theory.  
 
Besides a systematic mathematical foundation for a remarkably general framework, the advantages of the Gestalt theory of 
natural surfaces include a concrete computational approach to simulate or “recreate images” whose geometric invariants 
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and quantities might be perceived and estimated by an observer. The latter is at the very foundation of understanding the 
nature of perception of space and form, and the (computer graphics) problem of rendering scenes to visually invoke virtual 
presence. These applications justify a fundamental study of the theoretical foundations of perceptual geometry and attempts 
to develop computational models for its exemplars. 
 
In this paper, we outline a new approach to computational modeling of perceptual space and visual perception of form. Our 
motivation comes from the concrete yet challenging problem of digital communication of virtual perceptual presence 
within a network of computers by a group of intelligent agents (including human users). Thus, a distant intelligent agent has 
access to digital data streams arriving through the network channels, potentially corrupted by some noise and subject to 
uncertainties of statistical type. The computational problem of virtual presence calls for digital encoding of the details of 
the distant scene so as to invoke the perception of presence by the human user on the receiving end of the communication 
channel. We propose to provide a computational model of the perceptual space and the environment surrounding the human 
subject. Then, encoding and broadcasting the components of the model would be the first step towards rendering the virtual 
space and object forms.  Our theory lends itself to computational implementation by digital devices; however, it is not a 
mathematical theory per se, as it must incorporate human perception of the real world through physical measurements as 
well as complex biological computation of the environmental stimuli. Nonetheless, we wish to impart on the reader that a 
computational theory that agrees with experimental verification could be cast into a hybrid of rigorous mathematical 
components (that is, cast into the currently popular axiomatic framework) and experimental parts (also subject to 
verification of its agreement with observations, in their own right, much like theories in the physical sciences, up to 
prescribed approximate precision). Therefore, in exploring the criteria for computational modeling of space and form, the 
term “mathematical model” should be interpreted in this context.  
 
The contents of the paper are briefly as follows. We begin our discussion by a brief historical account of attempts by 
notable thinkers in bridging between experience in physical space as a source of abstraction of concept of space and 
geometry. This topic is seen to be close to our point of view by comparing the empiricist theories regarding physical space 
and  the role of learning and experience in forming the concept of the perceptual space, or its naive form, the concept of 
space as a “place” for objects. It is useful to compare and contrast the advances in physics of space-time with the 
complexity of generalizing them via the notion of metric to the perceptual space and perception of events. Examination of 
contributions by psychologists to estimate metric properties of the perceptual space points to logical shortcomings of their 
arguments similar to what are almost explicitly pointed out in articles by Helmholtz, Poincare’ and Einstein. The 
contradictions in metric theories of perceptual geometry point to a serious need for alternative theories. Our intent is to 
convince the reader of the role of learning from experience as the key behavioral requirement that must be incorporated in 
any theory of perceptual geometry. Therefore, the first section is primarily a review of a few key points from the historical 
articles by Helmholtz, and its impact on thinking of Poincare’ on the nature of geometry of perceptual space, and Einstein 
on the role of experience in theories of physical space-time, and his so-called “practical geometry.” At the same time, we 
provide a modern interpretation of their insights and arguments, and a brief mention of more modern follow-ups in the 
study of physical space-time. (For original source, cf. Geometrie und Erfahrung based on the invited address to 
Preussischen Akademie, Berlin, 1921, e.g. in Einstein’s Collected Works, or for an outline of his views, see P. A. Schilpp, 
ed., Albert Einstein, Philosopher-scientist, Tudor, New York, 1950, p. 355.) Cf. [1]-[13] for various aspects of the 
comments below. The references are partial to author’s modest background in the vast literature on space-time, and some 
are merely mentioned in view of the significance of the ideas of founders of such theories. More modern and often 
quantitatively supported accounts are available in monographs and text books, e.g. Palmer’s recent beautiful and 
comprehensive account [60] for topics related to perception, and the classic work of Green-Schwartz-Witten (Superstring 
Theory, Cambridge University Press, 1987) for the physical theory. For us, bridging the fruitful ideas from physics of 
space-time to perception is an important issue. Indeed, contrast and comparison with the physical theories are fundamental 
to our conviction, that the notion of Gestalt of surfaces (and its extension to Gestalt of places and events) is essential for 
success in establishing a geometric theory of visual perception. Further, we believe that attempts to formalize metric 
properties of perception of surfaces with full information from their texture, shading, etc. is likely to continue suffering 
from logical inconsistencies and limited applicability. Physical considerations and the history of developments of geometry 
of space-time from its differential topology, measurements of light propagation, and motion of free-falling bodies make it 
plane that the topology of the perceptual space as considered by contemporary cognitive scientists fails to satisfy the 
necessary separation properties that are necessary for existence of a metric geometry with desirable logical consistency.  
 
In a following section, we review the theory of Gestalt of surfaces, itself inspired by the Gestalt school of psychology and 
ecological theorists in vision research [3][4][28][29][30]. This establishes the second important link between our theory and 
cognitive science of human perception, itself in harmony with experiments in biological vision and psychophysics 



verification. There have been numerous attempts to provide mathematical frameworks to model visual perception, for a 
selection cf. Helmholtz [1] and Poincare’ [2] for the earliest critiques, and [11][12][17][18][20]-[26] for continuing 
progress in this direction, and [34][36][37][43][45][46][47]. In particular, Koenderink and van Doorn ([50] as one example 
of numerous publications) should be mentioned for substantial contributions to bridging between psychophysics and 
mathematics of perception. We have also briefly remarked on the mathematical formalism, as it is entirely new and quite 
distinct in spirit from the previous theories. Another reason to outline the mathematical concepts is their role in being used 
for computational and experimental study of Perceptual Geometry, with a brief discussion of their biological relevance.  
 

Perception Of Place And Space 
 
At first attempt, one is tempted to define the perceptual space is a medium in which perceptual geometry of natural 
surfaces, curves and objects is learned, whether by the human observer or any intelligent system capable of representing 
memories of stimuli in aggregates and inferring statistical correlates and probabilistic structures within them. The 
prerequisite to formation of the concept of perceptual space is that of physical space, where the observer is situated subject 
to experiences of perception of events and stimuli. After examination of the complexity in defining the notion of physical 
space, it becomes clear that one must settle an intermediate question before indulging in the more profound issues. Namely, 
to start from the concrete notion of “places” for objects and navigation of observers and attempt to generalize this notion in 
the context or perceptual organization, for instance, of vision.2 We introduce the “naïve” concept of perceptual space as a 
vehicle to develop the perceptual geometry of the visual space and object forms. The naive perceptual space is an extension 
of the concept of a “place”. We reserve the term “place” for concrete location of objects, where relative distances are 
estimated to judge how far or near objects are, the possibility of interaction or reaching for objects, navigation, etc.. Thus, 
we recognize a “place” as a matter of necessity for possibility of navigation and other tasks, where no abstraction is 
required beyond estimation of geometry of surfaces surrounding the observer, potentially with different 
strategies/mechanisms depending on the circumstances. Formation of the concept of “naive space,” on the other hand, 
conveys a step beyond recognition of specific places for objects. The difference between the “naive perceptual space” and 
“place” is analogous to the difference between number “two” versus “two apples.” The naive perceptual space, (provided 
that we accept its existence!) is an abstraction arising from the perception of “places.” Formation of surfaces means, in 
general, the possibility of serving as a place for objects, or being unsuitable for such. Having the notion of the naive 
perceptual space implies that the observer is capable of decision arising from abstraction of relations. In a novel situation, a 
visual percept could serve as a place or not, even if the observer has not experienced the stimuli arising from that particular 
case, or without the need to have the entire information from visual stimuli. This is, of course, different from recognizing a 
particular image as a place that one has seen or has not.  
 
We have preferred to use “naïve perceptual space” to emphasize the distinction from the more profound problem in 
cognitive science that bring under question even more basic problems, for instance, the necessity for formation of 
abstraction of physical space as a medium for cognition. Understanding the naïve perceptual space is a significant step in 
modeling human vision and related topics, such as image compression in the context of virtual reality and efficient realistic 
representation of spatial stimuli for distant users of teleconferences and other circumstances where realistic virtual presence 
is desirable. These applications justify a fundamental study of the theoretical foundations of perceptual geometry and 
attempts to develop computational models for its exemplars. On the other hand, understanding principles underlying 
formation of the cognitive perceptual space and insight into its continuity properties have profound implications for the 
human brain possessing a holistic medium as a prerequisite background for formation of perception of objects and events, 
and their relationships. Extending the analogy between “two” and “two apples” mentioned above, cognitive perceptual 
space compare to the naïve perceptual space as in “arithmetic” versus the number “two.” Abusing the terminology for the 
sake of brevity, we drop the adjective “naïve” and limit our investigation to the first two instances in the hierarchy of spatial 
cognition and representation. 
 
The questions of perception of space and mechanisms for spatial representation have received a great deal of attention by 
researchers in many areas and throughout centuries. For the purpose of this section, we wish to briefly review a small 
selection of attempts to understand spatial representation and perceptual geometry. Even if we were only interested in 
perception of surfaces, still we have to pay attention to the problems underlying perception of place and space, since 
perception of surfaces is influenced by the layout of the visual scene. Cf. [15][16][19][21][25][26][27]. Thus, perception of 
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surfaces in natural scenes is not independent of formation of the underlying “Gestalt” of perceptual space. The neural 
mechanisms for perception and recognition of “places” (e.g. recently unveiled in fMRI experiments by Nancy Kanwisher) 
indicate the biological relevance of this aspect, and potentially, in cognitive aspect through high-level neuronal processing 
and neuronal feedback mechanisms to other areas of the visual cortex.  
 
The intellectual history of this area of investigation touches upon philosophy and metaphysics, art and anthropology, 
psychology, physics, and finally, the notion of abstract space in mathematics and theoretical physics. A great triumph of 
mathematics is to distill abstract notions of space and how diverse geometric structures are brought to strict logical scrutiny 
and investigation by axiomatic methods. Pure mathematics has advanced beyond discovery of non-Euclidean geometries 
and unification of space-time and gravity through special and general theories of relativity. Grothendieck’s foundation of 
abstract algebraic geometry is by far the most versatile framework to formulate geometric questions of abstract spaces. On 
the other hand, many creators of abstract and physical theories of space have curiously paid attention to the challenge of 
investigating the notion of space endowed with structures imposed by the physical environment of human observers, and 
studied those properties in such ‘perceptual spaces” arising from the human experience. Later we shall briefly mention 
several key observations by a small representatives of renowned proponents of such investigations, Leibnitz, Helmholtz, 
Poincare’, Einstein and J.J. Gibson.  
 
In cognitive science, on the other hand, a number of researchers have examined how humans and other animals represent 
space (Bloom et al., 1996; de Vega et al., 1996; Gallistel, 1990; Healy, 1998; and a number of articles in [57] for a cohesive 
account.) Study of spatial representation in non-humans is particularly enlightening in view of the necessity of establishing 
convincing evidence for biological basis of formation of some form of spatial representation. Beyond use of space itself for 
navigation and survival, such research suggests how spatial representations might influence reasoning, memory for 
nonspatial relations and problem solving. Cognitive scientists report variation in uses of spatial reasoning in specific 
cultural contexts, and even spatial representation as a basis for abstract thought. Evidence for the encoding of space ranges 
from psychophysics studies in humans, as well as behavioral studies in animals. As a result, behavioral researchers report 
observing a wide variety of internal mechanisms available for navigating through space. A body of research in this direction 
supports a theory of cognitive maps to find food and home. Recent findings, however, (e.g. Robert in [57]) pose some 
significant methodological challenges to showing that cognitive maps actually exist. Robert (cf. [57]) provide several 
alternative interpretations of existing data, and argues the basis for three very likely uses of space are encoding time, 
encoding number, and encoding order--and presents provocative analysis suggesting that rats use a spatial array to make 
transitive choices in a discrimination learning task. Despite extensive effort and a long intellectual history, past and recent 
studies uniformly indicate the complexity of the problem of formulating general, yet concrete hypotheses in perception of 
space and spatial representation. There has been some recent exciting progress in the direction of investigating the 
neurobiological substrates for perception of place and (naïve) space through functional magnetic resonance (fMRI) by 
Kanwisher et. al. (see above.) Yet, the same old question remains as illusive as ever: how does the brain perceive space and 
form of objects in it? 
 
How much of the advances in the role of physics (experience) in determination of the structure and properties of space-time 
could be carried over to formulation of metric properties of the perceptual space? In vision science, there are numerous 
investigations ranging from attempts to estimate metric properties of the visual space in the style of Riemannian geometry 
to extensive examination of very subtle phenomena in visual perception of distance, size, constancy of shape, … Such 
results have shed light on numerous finer and subtler properties of perception of space and its geometric manifestations by 
human observers, yet without getting close to a definitive answer. References [15][21][32][38][43] discuss numerous 
partial successes as well as subtleties that arise in finding a compromise between the Riemannian version of geometry and 
the “metrics” for the perceptual space (as if the existence of a rigorous Riemannian metric is a given!) Dynamic of eye 
movements enters any direct geometric approach through complex nonlinearities [52], so the well-known texture-based 
theories of perception of surface geometry (e.g. [41][48][39][47]) also encounter mathematical complexities to account for 
subtleties and diversity of circumstances in of human visual perception. All such pitfalls, however, point to new directions 
to be followed in formulating the mathematics underlying perception of places and space. Learning theory is a first 
profound step in this direction (e.g. [40]), and understanding its implications in forming the appropriate mathematical 
framework for nonlinear complex biological/behavioral systems (e.g. [31][33][59][60][61][62].) 
 
The study of intrinsic geometry of space, and space-time in physics has a long and glorious history, culminating in 
Einstein’s theory of special and general relativity. Before the 20th century, however, empirical study of physical space is 
often influenced by consideration of human experience and perception of events, as the quoted passages from Helmholtz 
adequately illustrates. The following passage is selected from the 1876 paper of Herman von Helmholtz, “The Origin And 



Meaning Of Geometric Axioms.” Helmholtz argues that the axioms of geometry, “…taken by themselves out of all 
connection with mechanical propositions, represent no relations of real things… This is true, however, not only of Euclid’s 
axioms, but also of the axioms of spherical and pseudospherical geometry… As soon as certain principles of mechanics are 
conjoined with the axioms of geometry, we obtain a system of propositions that has real import and which can be verified or 
overturned by empirical observations, as it can be inferred from experience. If such a system were to be taken as a 
transcendental form of intuition and thought, there must be assumed a pre-established harmony between form and 
reality….” Indeed, Helmholtz had the foresight that a future form of geometry based on the human experience should arise 
from the ashes of Riemannian geometry, the most general form of axiomatic geometry compatible with principles of 
classical mechanics and optics of the time. How does human experience, then, lead to discovery of the new geometry that 
takes into account principles of mechanics and the environment?” 
 
“In conclusion, I would again urge that the axioms of geometry are not propositions pertaining only to the pure doctrine of 
space. As I said before, they are concerned with quantity. We can speak of quantities only when we know some way by 
which we can compare, divide, and measure them. All space measurements, and therefore all ideas of quantities applied to 
space, assume the possibility of figures moving without change of form or size. It is true that we are accustomed in 
geometry to call such figures purely geometric solids, surfaces, angles, and lines because we abstract these from all the other 
characteristics, physical and chemical, of natural bodies. Only one physical quality, rigidity, is retained. We have no mark of 
rigidity of bodies or figures other than congruence whenever they are superimposed on one another, at any time or place and 
after any revolution. We cannot, however, decide by pure geometry and without mechanical considerations whether the 
coinciding bodies may not both have varied in the same way.” 

 
“If it were useful for any purpose, we might with perfect consistency look upon the space in which we live as the apparent 
space behind a convex mirror with its shortened and contracted background. We might also consider a bounded sphere of 
our space, beyond the limits of which we perceive nothing, as infinite pseudospherical space. We should then, however, 
have to ascribe to the bodies, which appear as solid—and to our own bodies, at the same time….. We would also have to 
change our system of mechanical principles entirely, for even the proposition that every point in motion, if acted upon by no 
force, continues to move with unchanged velocity in a straight line is not adapted to the image of the world in the convex 
mirror. The path would indeed be straight, but the velocity would depend upon the place.” 

 
“Thus the axioms of geometry are concerned, not only with space relations, but also with the mechanical behavior of solid 
bodies in motion. The concept of a rigid geometric figure might indeed be conceived as transcendental in Kant’s sense, that 
is, as formed independently of actual experience, which need not exactly correspond to it, any more than natural bodies ever 
in fact correspond exactly to the abstract conception we have obtained of them by induction. Taking the concept of rigidity 
thus as a mere ideal, a strict Kantian might look upon the geometric axioms as propositions given a priori by transcendental 
intuition, which no experience could either confirm or refute, because it must first be decided by them whether any natural 
bodies can be considered rigid. But then we should have to maintain that the axioms of geometry are not synthetic 
propositions, as Kant held them: they would merely define what qualities and behavior a body must have to be recognized 
as rigid. But if to the geometric axioms we add propositions relating to the mechanical properties of natural bodies—if only 
the axiom of inertia or the single proposition that the mechanical and physical properties of bodies and their mutual 
reactions are, other circumstances remaining the same, independent of place—such a system of propositions has a real 
import which can be confirmed or refuted by experience, but for the same reason can also be got by experience. The 
mechanical axiom just cited is, in fact, of the utmost importance for our whole system of mechanical and physical 
conceptions. That rigid solids, as we call them (they are really elastic solids of great resistance), retain the same form in 
every part of space if no external force affects them is a single case falling under the general principle.” 

 
“For the rest, I do not, of course, suppose that mankind first arrived at space intuitions in agreement with the axioms of 
Euclid by any carefully executed system of exact measurement. It was rather a succession of everyday experiences—
especially the perception of the geometric similarity of great and small bodies, possible only in flat space—that led to the 
rejection as impossible of every geometric representation at variance with this fact. For this no knowledge of the necessary 
logical connection between the observed fact of geometric similarity and the axioms was needed, but only an intuitive 
apprehension of the typical relations among lines, planes, angles, etc., obtained by numerous, attentive observations—an 
intuition of the kind the artist possesses of the objects he is to represent and by means of which he decides surely and 
accurately whether a new combination which he tries corresponds to their nature. It is true that we have no word but 
intuition to mark this, but it is knowledge empirically gained by the aggregation and reinforcement of similar recurrent 
impressions in memory, not a transcendental form given before experience. That other such empirical intuitions of fixed 
typical relations, when not clearly comprehended, have frequently been taken by metaphysicians for a priori principles is a 



point on which I need not insist.” 
 
Toward the end of the nineteenth century, Poincaré [2] argued against the possibility to experimentally deciding which of 
the mutually exclusive Riemannian geometries of constant curvature (hyperbolic, elliptic, or flat Euclidean) applies to the 
physical space surrounding us. Poincaré discusses also the situation of perceptual space, and its relation to the physical 
space. It is interesting to note that the conceptual construction of the notion of space in modern physics is based on the 
empirical fact observed by Poincaré [2]. According to Poincaré, measurement is performed of empirically given physical 
objects in space, whether rigid bodies or light rays. Also, there exist two kinds of alteration of physical objects, changes of 
state and changes of position. In contrast to the former, it is the latter type of change that can be reversed by the arbitrary 
motions of our bodies. “That there are bodily objects to which we have to ascribe within a certain sphere of perception no 
alteration of state, but only alterations of position, is a fact of fundamental importance for the formation of the concept of 
space (in a certain degree even for the justification of the notion of the bodily object itself).” The important conclusion 
regarding the structure of space that Poincaré derives is that, experiment can tell us only of the relations that hold among 
physical objects, cf. [2]. The important conclusion emerging from argument of Poincare’ is that experience can neither 
confirm nor refute a geometry, whichever geometry it may be. For Poincaré, one chooses geometry merely as a matter of 
convention. We select that system of geometry that enables us to formulate the laws of nature in the simplest way. Some 
three decades later, Einstein acknowledged the contributions of Helmholtz and Poincaré, discussed the role of experience in 
theories of physical space-time in his invited address titled Geometry and Experience to the Prussian Academy 3(Berlin, 
1921.) Einstein introduced geometry as a form of theoretical physics, and coined the term “practical geometry,” in contrast 
to Hilbert’s abstract axiomatic geometry that he considered in the domain of mathematics. A bodily object is called “prac-
tically rigid” by Einstein. The position of either of two given practically rigid bodies can be changed without changing the 
position of the pair as such: So we get the concept of “relative position,” a special case of which is “contact” of two bodies 
at a point. Any two points on a practically rigid body define a “stretch.” From this point on, one can follow the course of 
discovery of metric properties of the physical space based on the invariance of length of rigid bodies. Einstein’s theory of 
general relativity showed that Poincare’ was not completely right in his conclusion about the physical space. However, it 
remains to see how his view regarding the perceptual space holds with time. In modern theories of perception (e.g. [15]-
[19]), one knows from numerous psychophysical experiments that the position of observer plays an important role in her/his 
perception of length and other metric properties in distances that relativistic changes are absent. The modern arguments 
against conclusion of Poincaré must still account for the subtleties of overcoming short-distance dependence on position of 
observer and his/her subjectivities, unlike the case of the physical space (see below.) The physical space contains the stimuli 
and observers, but it is transformed by the senses beyond our recognition! Which are the rules of perceptual transformations 
of space? If we start from the physical space, we must address the question of transformations of one form of space into 
another one. 
 
The question of how much of the geometry of space and space-time could be derived from experiments is settled in a 
brilliant paper by Herman Weyl (Zur Infinitesimalgeometrie … Reprinted in Weyl’s collected works Gesammelte 
Abhandlungen, Springer 1968, pp. 195-207). According to Weyl, the affine and the metric structures of space-time can be 
derived from experiments measuring propagation of light and the motion of free-falling bodies. More generally, Ehlers, 
Pirani and Schild provide a constructive realization of Weyl’s program and accomplish to derive the conformal, projective 
and metric structure of space-time from measurements on the basis of light propagation and motion of free-falling bodies 
(see General Relativity: Papers in honor of J. L. Synge, Oxford University 1972.) The latter implies that measurement of 
length and time intervals are essentially derived operations in mathematics, based on measurements of fundamental physical 
phenomena. In Ehler’s words “ It has been shown on the basis of simple facts the space-time geometry of general relativity 
can be constructed without resorting to concepts or theorems of theories which presuppose such a geometry. … only 
concepts by which relations between events, particles, and light rays are describable have been introduced. This fully agrees 
with Leibnitz’ position of viewing space and time not as objects, but rather as sets of spatial or temporal relations among 
things.” (Cf. Philosophie und Physik, Wissenschaftverlag, Mannheim 1988, pp. 145-162, and also Coleman and Korte 
article “Jet bundles and path structures,” Journal of Mathematical Physics (1980) Volume 21, pp. 3513-3526 for a correction 
of Ehler-pirani-Schild argument.) 
 
Our intention is to investigate how the intermediate level (or surface-based) visual perception influences perception of the 
(naïve) space, and in turn, how spatial representation of space is learned from the optical information in the environment. 
One method of study is to propose the naïve perceptual space obtained from transformation of the physical space (places) 
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defined by the environmental optics. Popular (image-based) theories in computational vision start with the two-dimensional 
images acquired by a camera or, presumably, the impression upon the surface of the retina. The central problems of vision 
propose algorithms for solving the inverse problems that recover the three-dimensional shape of objects in a scene from 
their two-dimensional images. In this formulation, the problem is ill posed for individual two-dimensional images, and it is 
necessary to invoke specific properties of the image (or the sequence of images, as in binocular vision or motion parallax) in 
order to derive additional constraints so as to transform the original questions into well-posed inverse problems. The optical 
properties of surfaces of objects in the scene, such as texture, color, and shading have been investigated in detail, and 
numerous algorithms propose to solve the above-mentioned central problem in vision. None of the algorithms so far have 
succeeded to solve a sufficiently general class of the problems for images in natural scenes. This is not surprising in view of 
the complexity of the visual cortex at any scale and from all angles of study, whether neurobiological or behavioral! In 
short, a naive theory of perception of “place,” or the primitive notion of the space where the observer is located, follows 
from investigation of perceptual geometry of surfaces. As implied by Helmholtz discussion, perception of space (in the 
sense of cognitive science proper) requires consideration of more intricate factors. Regardless of types of mechanisms 
employed in perception of space, perception of surfaces are influenced by how the observer perceives spatial organization of 
objects and representation of events in her/his perceptual geometry of space. This factor, in turn, is incorporated in our 
perceptual geometry [31][33] as part of the subjective function evaluating the most probable choice for the Gestalt of 
surfaces. This is one important factor in favor of the Gestalt theory of surfaces, as computationally and experimentally the 
most accessible part of perception of form and space. It is also possible to formulate emergence of the naïve perceptual 
space as a result of categories of perceptual transformations of samples of observer’s environments. An observer, therefore, 
learns to unravel these transformations, and to establish cause and effect relationships, expectations, navigation, rewards and 
punishments,… Perceptual transformations are observer-dependent, and a subjective function optimizes the probability of 
learning the optimal rules. The mechanism of learning takes place through incremental correlations and establishing an 
optimal statistics of the representations of stimuli and how they relate to the physical world around the observer.  
 

Perceptual Geometry Of Surfaces 
 
The mathematical concepts for solution of (restricted) vision problems cover a broad range. For example, the Gestalt and 
the ecological schools have been content with qualitative analysis and heuristic arguments (see Palmer for an excellent 
account, and ). More recent theories are often supplemented by algorithmic and computational approaches, as pioneered by 
David Marr and continued by the following generations (see Palmer [59] for a comprehensive account in a modern 
context.) Statistical and learning theoretic approaches have opened fresh views of the vision problem, nonetheless, still with 
limited success (e.g. as in [40] for successful pioneering prototype.) There is also the remarkable trend in convergence of a 
vast body of experimental evidence from neurobiological studies, cognitive theories and psychophysical results in 
explaining various visual phenomena, from illusory contours to Fourier-like decomposition in spatial channels of visual 
stimuli (De Valois et. al. [49]). Of course, Fourier representation is merely a mathematical construct, and variants of 
wavelets could be also used in conjunction with learning theory and sparse representation theory, to provide alternative 
models [60][61]. Nonetheless, it is fair to say that there are still many problems in vision that cannot be solved with the 
existing computational tools and mathematical theories. Thus, it is natural to explore new ways to understand the 
fascinating process of vision, potentially with introduction of analytic concepts that might fall well beyond the conventional 
logic of mathematics and its relentless rigor. Such mathematical theories based non-Aristotelian logic and subject to 
approximate reasoning were anticipated by Helmholtz, Poincare’, and in the case of physical space subject to experience, 
by Einstein, among others. Especially, such theories appear to have been inspired by exploratory studies and speculations 
on the nature of perceptual and physical space, and their roles in human perception of natural stimuli and events, and even 
questions of consciousness. 
 
In the companion paper in this volume, we present simulation of results that apply the proposed learning theoretic approach 
to test the theory in concrete cases of visual perception of forms of natural surfaces with some degree of structural 
regularity such as the human face. To our knowledge, all the results are new, and they present a fresh look at the 
interpretation of geometry, from Helmholtz and Poincare’ to contemporary views by Gibson and Koenderink. The success 
of the theory is expected within realistic expectation to be at least as good as present theories of visual perception, as the 
simulation results indicate consistent agreement with observations and approximation by the appropriate mathematical 
theories.  
  
The space is perceived through experience with our surroundings, places of objects, and the range of possibilities in 
maneuvering within the environment. From the point of view of perception, object recognition is an important factor in our 



survival and functionality in the world. Through our interactions and experiences, we learn the properties of objects, 
estimate their places, and distinguish them from one another. We learn, in particular, that rigid objects occupy a constant 
volume, and their  bounding "surfaces" keep their visual shapes and forms. Acknowledgement of properties and places of 
objects are learned through a combination of senses. Eventually, our visual perception of the external world relies on our 
ability to distinguish various pieces of surfaces. We integrate collections of surfaces into parts of an object, we fill any 
missing information by inference and other mechanisms that develop as part of our survival strategy. Thus, a theory of 
visual perception of surfaces is at the heart of any comprehensive theory of human perceptual organization, and in 
particular, any theory of space that advocates experience as an important factor. 
 
The problems of figure-ground separation and scene segmentation in perceptual geometry could be formulated in terms of 
structural regularity of regions of images in statistical and information theoretic terms. Intuitively, as well as in 
psychophysical studies performed by cognitive scientists, perception of local structural regularity is fundamentally 
correlated with perception of local symmetry of surfaces, and under parallel projection of planar surfaces, with local 
symmetries of their images. In other words, such local symmetries distinguish prevalent regularity of common surfaces in 
the environment from randomness in arbitrary composition of colored dots; or what is the same, they distinguish between a 
meaningful image versus a generic pattern of a totally random selection of light intensities in matrices encoding local 
incoherence in optical properties. From a mathematical point of view, it can be shown that in the space of all possible 
patterns of light (i.e. all large matrices of same size with non-negative coefficients), the set of possible images of natural 
scenes is a very small subset. In the technical jargon of mathematical analysis, true images form a subset of measure zero in 
the space of all possible 2-dimensional patterns representing arbitrary light intensities.   
 
Questions regarding the nature and mechanisms of human vision have attracted scientists for some time in diverse contexts. 
There are a number of different formulations and proposed theories in literature, addressing such problems. Below, we shall 
briefly highlight some of these findings related to the present research.  The most notable recent contribution in this area is 
due to Gibson, advocating the structure of "optic array" at each point in the visible space as a key ingredient in his 
"ecological theory." Historically, Leonardo's theory of radiant pyramid objects can be considered as the origin of theories of 
visual perception similar to the ecological theory of Gibson that are based on the optical structure of points in space. Also, 
Keppler's final solution to the problem of visual image formation and the retinal image is an indispensable key in almost all 
visual theories until Gibson's ecological theory. However, Gibson rejected the claim that the retinal image is the starting 
point for visual processing. Gibson suggested replacing the classical approach to "depth" or "space" perception by an 
approach that emphasized the perception of surfaces in the environment. The environment consists of textured surfaces, 
which are themselves immersed in a medium (air). Gibson argues that we need an appropriate geometry to describe the 
environment, which will not be necessarily based on abstractions such as "points" and "planes." An ecological theory must 
take surfaces and texture elements as its starting point. To perceive things rather than nothing, light must be structured. In 
order to describe structure in light, we need an "ecological theory of optics." An ecological optics must cut across the 
boundaries between physical and physiological optics and the psychology of perception. Gibson argued that it is the total 
array of light beam reaching an observer, after structuring by surfaces and objects in the world, which provide direct 
information about the layout of these surfaces and objects, and about movement within the world and by the observer. Cf. 
[5]-[10]. These ideas clearly influence any empirical approach to design learning algorithms in perceptual geometry. 
 

Learning The Geometry Of Forms And Places 
 
How do humans and other animals learn to represent space? The significance of this question for our topic lies in the 
empiricist approach adopted in our theory, along with evolution of concepts suggested in the preceding paragraphs. The 
process of learning a representation of space, and the nature and variability of representations are all fundamental topics of 
active research. The important consequence of such studies for us lies in taking the point of view of learning theory. Cf. 
[52]-[55]. A naive definition of the basic form of an intelligent system is as follows. An intelligent system in an input-
output system that has at least the following capabilities: (a) Memory, that is, any form of retaining certain representation of 
inputs for the period of time during its exposure to its environment. (b) Internal processing of the representation (or data) in 
the form of extracting correlation among objects that are stored in the memory, and incrementing its memory by the results 
of the processing. (c) The capacity to organize the results of (b) into a coherent set of outputs that eventually exhibit a high 
correlation with the physical constraints in its environment, thus leading to a feedback mechanism through further input. 
 
The learning theoretic approach that we have developed is inspired by the visual system: take sample stimuli from the 
environment, preprocesses the collection of feature data to simplify the task of statistical inference, and processes the 



filtered data through discovery of higher statistical correlation. The heuristic grounds for adapting these basic concepts are 
supported by behavioral, neuro-physiological and psychophysical studies in vision, e.g. [40][42][46][54][55] and others 
mentioned in the references below. In our previous works, we have elaborated on a number of issues that are parts of the 
learning theoretic implementation of forming the perception of places. If we take the naive definition of space as the 
volume of the environment surrounding the observer, and defined by the surfaces perceived by the observer, then forming 
the naive perception of space could be explained  by generalization of the learning theoretic methods in [31][33][61][62], as 
we shall briefly outline below. 
 
In our previous paper [62], we provided a detailed learning theoretic treatment of perceptual geometry of objects, focusing 
on the case of physical models of space curves. In particular, we have answered the question of perceptually distinguishing 
two possibly novel space curves based on observer's prior visual experience of physical models of curves in the 
environment. The prototype for “physical curves”, just like branches of trees and other solid models, are volumetric 
representations that have relatively small cross section versus the elongated remaining dimension. The learning algorithms 
are applied to samples of “physical curves”, simulating the observer’s experience and retaining such representations to 
process the statistics of stimuli impressed upon her/him by such physical models of curves. The intelligent system 
abstractly models the observer’s capacity to derive two statistically independent local functions of curves. In analogy with 
standard differential geometry, we call these functions curvature and torsion functions. In standard differential geometry, 
the Fundamental Theorem of Space Curves states that two differential invariants of a curve, namely curvature and torsion, 
determine its geometry. Our pair of invariants also distinguishes physical models of curves in the sense of perceptual 
geometry. If these functions are approximately the same for two space curves, then the observer confirms the two are the 
same. A perceptible difference in the pairs of invariants from two exemplars of physical curves, then, leads the observer to 
distinguish the two objects as dissimilar. 
 
To learn the perceptual geometry of places (or the naive perceptual space), the observer must sample stimuli from the 
environment, distinguish surface orientation, slant, … from shading, texture, and other information. Next, from perspective 
information, create a representation of the three-dimensional space in her/his environment. The step involving estimates of 
geometry of surfaces has been treated in our previous papers [31][33][60][61]. Motion in space, eye movements, parallax, 
and other mechanisms provide sufficient sample of the environment stimuli so that the incremental correlations from stored 
representations could provide statistically least dependent invariants, from which, perceptual organization of surfaces could 
be inferred. One important and interesting case is inference of perspective dept in interior of buildings and other spaces 
with reasonably flat pieces of surfaces dominating the surrounding. Our preliminary results in this direction indicates that 
the solid geometry of space can be inferred through learning in the cases with simpler interior environments (where surface 
geometries can be estimated, as in the images below.) The result in the case of perspective depth is modeled by collecting a 
set of photographs from architectural elements, extracting the prominent edges in black and while, and reconstructing the 
basic projective geometric data for inference of depth from the configuration of lines. Once this simplified geometric 
inference is achieved, representation of surface planes and their spatial relationships become a standard problem in 
computational vision. Illumination, texture and other optic information allow one to estimate shape from such auxiliary 
data. In practice, however, the variety of textured curvilinear surface patches their occlusions and multitude of other 
geometric features in most natural visual scene poses a computationally daunting combinatorial problem. A satisfactory 
compromise presented in our research (Assadi, Eghbalnia, Diemer, Uchill, to appear) attempts to model interior space of 
some modern architectures, where almost all surfaces are flat, textures are simplified and illumination is greatly simplified 
or in diffused light. Two samples of the preprocessed data are provided below. 
 

 
 



 
Mathematical Aspects 

 
 
In this brief section, we outline a mathematical formalism that we use to lay out the grounds for experimental validation of 
our theory, as well as measurements necessary for verification of Gestalt of surfaces, the fundamental notion underlying 
perceptual geometry of space and form. The point of view that we take toward vision is generally called Active and 
Exploratory Vision. Perception of natural events is in general active and exploratory, and vision is no exception to this 
realistic rule. Saccades and other eye movements are necessary parts of visual perception. Therefore, any realistic theory of 
vision must take into account the dynamics created by the evolution of the processing in neuronal networks, including the 
dynamics of eye movements. Another fundamental phenomenon that one must take into account is that of visual attention, 
cf. [53]-[57], for example. Any reasonably helpful discussion of the experimental and theoretical studies of these topics will 
take many more pages. We refer the reader to a collection of references that are representative of some of these studies.  
 
In the following, we wish to formalize the notion of a dynamical system that describes the sequence of neuronal processing 
in the brain of an observer due to the stimuli from the environment. The neuronal processing are the result of, e.g. the 
interaction of photons attributed to the sight of an object S with the discrete array of photoreceptors and the resulting 
activities in neuronal networks in retina, the thalamus and the cortical areas. Such a dynamical system is a “coherent 
system” that converges to description of the Gestalt of S. Therefore, a computational implementation of the theory forecasts 
the design of a learning system that could output a representation of the Gestalt of a surface. Further processing in the 
visual cortex and interaction with other areas, e.g. the frontal cortex, hippocampus, amygdala, etc. adds more cognitive and 
affective details, association with prior experience, and possibly action. Our theory calls for only the processing part ending 
in the Gestalt of S, leaving out further refinements that might be added. We must mention, however, that the theory does 
not exclude top-down influence of these higher levels of processing on the mechanism of formation of the Gestalt. Indeed, 
there are successful computational implementations of top-down processing for visual perception and object recognition 
that indicate the added complexity of processing lower-level visual areas (e.g. V1, V2) as a result of feedback among the 
visual areas and by thalamo-cortical connections. Our point of view is to hide all such intricate details in holistic stages of 
the processing, regarding them as transformation of information within neuronal networks, and abstractly represent them by 
the evolution in a dynamical system of which we expect to extract only the limited information that describes the simplest 
holistic outcome of the system, namely the Gestalt of the surface.  
 
The perceptual geometry of space is far more complex, as the following remark shows. The computational notion of 
perceptual space interpreted according to the optics in the layout of a scene varies drastically from one view to another. 
However, our expectation from the notion of space as an abstraction of the notion of place should transcend the 
organization of Gestalts of surfaces defining the visual scene (optical component of the physical space surrounding the 
observer.)  Thus, understanding the perceptual space requires, seemingly, a more complex mathematical construct from the 
collection of dynamical systems that aim at elucidating the Gestalt of a surface. In short, the notion of Gestalt of surfaces is 
potentially useful for rendering the virtual space (in the sense of computer graphics), and as such, placing an observer in a 
virtual optical scene in order to convey the percept of virtual presence in a distant site. We certainly do not claim that 
present level of complexity of oracle dynamical systems (cf. below) would lead to insights beyond such computational 
applications.  
 
Consider an observer receiving light rays reflected from a surface or a collection of surfaces. Let us mark the time t = 0 for 
the initial instant that the light rays reach the retina. For the observer to reliably report visual perception of a surface S, a 
threshold time interval τ for exposure is required.  By definition, the neuronal processes at in the observer’s brain are called 
perceptually coherent with respect to S at time τ.  All neuronal processes after τ are reliably reported as percept of an object 
S - possibly with more details.  All such Neuronal processes after time t are called coherent with respect to S. 
 
Hypothesis. There is a first moment τ at which a globally coherent percept is formed (as a result of neuronal processing 
which is the result of a discrete collection of events such as photons interacting with discrete array of photoreceptors). From 
time τ until the first threshold of recognition the precept remains coherent. Thus, there exists a processing stage where the 
following two axioms apply: 
1) Perceptual Coherence. 
2) Persistence of Coherence. 
 



Definition. The coherent percept at time τ is called the Gestalt of the surface S. Note that further processing after time τ 
refines the information content of the Gestalt of S. 
 
We can formalize the mathematical framework of our theory by introducing some standard tools from dynamical systems in 
Hilbert spaces. This choice of description is merely to help us conceptualize certain properties and their logical 
consequences more explicitly, as well as further development toward computational algorithms for numerical 
implementation. Functional analysis, in particular, the theory of Hilbert space operators is a highly versatile area of 
mathematics that has been developed to provide the rigorous foundations of quantum theory.  Once an observer sees an 
object or a whole scene, the process of vision begins with the impression of photons of various wavelengths on the 
photoreceptors in the retina. It is a well-established result in vision science that (statistically) a single photon (a quantum 
unit of light) can potentially stimulate a photoreceptor. Thus, the process of vision starts with a discrete array of visual 
processes that evolves into the cortical information processing of visual scenes, and it leads to perception and eventually a 
description of an object.  
 
The state of cortical processing at each instant of time is given as points in a Hilbert space H. Thus, the evolution of the 
process, therefore, provides an orbit of a dynamical system. We know very little about the details of points in such a Hilbert 
space, and even less about the type of dynamical systems that describe evolution of cortical information processing. 
Nonetheless, we could take a few steps further based on the nature of the problem at hand. Namely, we seek just enough 
information through a finite number of measurements and observations to be able to answer specific questions about such a 
dynamical system. If we assign coordinates to points of the Hilbert space using any prescribed representation, then our 
statement translates into computing some function of a finite number of the coordinates of points. The finiteness 
assumptions are essential in the realistic theory. The informed reader realizes, however, that intermediate stages of a 
mathematical model with finite input and finite output may well involve arguments regarding convergence or divergence of 
infinitesimal processes. We introduce a key concept that distinguishes our theory from others, namely, the formalism of the 
notion of “purpose” in intelligent complex biological systems with respect to performance of their tasks. A convenient 
mathematical notion that helps us formalize this admittedly non-rigorous concept is that of a projection operator in a Hilbert 
space. To avoid misunderstanding regarding various interpretations of “purpose”, we use the terminology “decision” that 
fits artificial intelligence without ambiguity, and should, therefore, be useful in computational implementation of our 
theory. As observed in Neurophysiological studies of vision, e.g. [54], the role of visual attention in perceptual tasks fits 
well with the informal concept of “purpose” and its formal counterpart, namely “decision.”  
  
A Decision D is a collection of projection operators in the Hilbert space H. The description of an object S is optimal with 
respect to a Decision D if its representative vector v is not in the kernel of any projection operator p in D (that is, p(v) is 
nonzero.) Two vectors u and v are equivalent with respect to a decision D if for every p in D p(u) = p(v). Assuming that 
physical properties of an object causes states of cortical information processing that is represented as a vector v at time t, 
then v encodes the instantaneous state of the brain accounting for all the stimuli that could be afforded by the physical 
properties of the object in the scene. As time passes, one obtains a sequence of such vectors encoding all the information 
regarding the evolution of the process. Let us call a sequence of vectors indexed by time is called a time-indexed dynamical 
system. A dynamical system is oracle at time τ with respect to Decision D if every projection  p(vt) is nonzero for all times 
t greater than τ. The condition of oracle is a substitute for the informal assertion that we wish to consider only those aspects 
of the theory for which we can account by computational implementation and scientific measurements. Another reason for 
this condition is to bring the study of such dynamical systems to the domain of “calculus of oracles” (forthcoming article.) 
 
Experimental validation of our theory can be cast into a mathematical framework in which familiar mathematical objects 
must be evaluated. Moreover, the neuronal and psychophysical basis for this theory must be taken into account to validate 
the relevance of our theory to human visual perception. In forthcoming papers, we describe design of experiments that 
could lead to validation or shortcomings of our theory. 
 

Conclusion 
 
Surfaces and their optics define the most primitive notion of places for objects. Perception of place and motion are related, 
and both are influenced by environmental factors. Abstraction of multiple experiences of “place” leads to perception of 
“space.”  The Gestalt of surfaces is the most basic global representation in cortex that carries the minimal optical 
information needed to estimate the object’s form. Later stages of processing results in incorporating additional optically 
encoded surface details (texture, shading, relatively small land-marks or salient features…). Processing evolution of the 



Surface Gestalt due to higher-level neuronal processes represents the finer details. We have described a geometrical model 
for the perceptual space. We have shown that there are methods to compute these structures. Several bio-behavioral 
questions remain to be studied--for example, validation of the theory via psychophysics. A model for perception of 
geometry of objects and their dynamics follows from optics of textured surfaces based on Gestalt. More generally, the 
starting point for Perceptual Geometry is Gestalt of a geometric object, that is, as the simplest piecewise smooth structure 
that underlies more complex models of perception by the human observer. A naive concept of perception of “place” follows 
from perceptual organization of Gestalt of surfaces that define the optics of the place. The naïve concept of place is 
sufficient for computational implementation of virtual presence in computer graphics. However, generalization of the naïve 
notion of perception of places to perception of space (in the sense of cognitive science) is still an open problem. 
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